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1 Introduction

Agricultural production is complex and risky. Weather is just one of several potential causes

of yield variability. Other determinants include the quantity and quality of inputs, the

agronomic characteristics of farmed parcels, the inherent or learned abilities of farmers, the

policy environments in which farmers operate, and changes in technology (Hardaker et al.,

1997). In this paper we use parcel-level panel data from India to measure the sources of

variability in agricultural production and assess their relative importance. Ascertaining just

how large a role weather plays in determining yields is vital to estimating the projected

effects of climate change on a variety of outcomes, including aggregate economic activity

(Schlenker et al., 2006; Deschênes and Greenstone, 2007; Burke et al., 2015). Understanding

weather induced variation in yields is also essential when designing and implementing weather

index insurance, an increasingly popular micro-level risk management strategy in developing

countries. However, recent pilot projects and randomized control trials in Asia have found

limited farmer uptake of index insurance (Hazell et al., 2010; Giné et al., 2012; Cole et al.,

2013; Cai et al., 2015) Using a multilevel modeling approach and Bayesian estimation we

find that a relatively small fraction of the variability in yields can be attributed to seasonal

variation in weather. While weather variability does not contribute much to yield variability,

on average, our Bayesian methodology reveals the presence of infrequent but potentially

costly extreme weather events. This result motivates our reassessment of the pricing of

rainfall insurance and may partly explain the low uptake of weather index insurance by

farmers.

The goal of weather index insurance is to assist farmers in managing covariate risk. In

developing country agriculture, covariate risk is particularly difficult to informally insure

against since, by its very nature, it affects neighboring households and limits the effec-

tiveness of traditional risk sharing mechanisms. Several early studies looked at the role of
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weather risk on agricultural production and insurance in India. Townsend (1994) found that

household consumption moves with village-level consumption and is not affected much by id-

iosyncratic shocks, which households cover via borrowing, gifts, and asset sales. He concludes

that while households can insure against individual risks, covariate risk remains a problem.

Along similar lines, Rosenzweig and Binswanger (1993) focus on the role of weather risk on

production and asset portfolios. They find that village-level rainfall variables explain only

a small proportion of household-level profit variability. And, similar to Townsend (1994),

they find households insuring against non-covariate risk. In part, the recognition that house-

holds are less successful in insuring against covariate weather risk than in insuring against

non-covariate risk motivates recent attempts to design and implement weather-based index

insurance for poor farmers.

This apparent need for weather index insurance has been met by surprisingly little uptake

of the product by farmers in India (Giné et al., 2008, 2012). There are many potential

barriers to uptake of insurance, including trust in the insurance company, household liquidity

constraints, and lack of financial literacy of household decision makers (Cole et al., 2013).1

In addition to these consumer-centric explanations for low uptake, flaws in the product itself

may be a cause, specifically the imperfect correlation between crop yield and farm profit,

the outcome of ultimate interest to farmers (Binswanger-Mkhize, 2012). This uninsured

exposure, or basis risk, can be a significant deterrent to purchasing insurance by reducing

the utility gain for households. There are two potential sources of basis risk. One is the

loss caused by an event not measured by the index. This could include, for example, low

temperatures that retard crop growth or high winds that cause crop damage, when the

insurance index is based on rainfall. Another potential source of basis risk is low correlation

between the index and covered losses. This can occur, for example, when measurement

1For example, Banerjee et al. (2014) find no demand among Indian households for health insurance
bundled with microfinance, even among those for whom there was clear value. They attribute this low uptake
to poor understanding of the insurance product and poor support for enrolling by insurance underwriters.
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stations that are used to trigger payouts are spatially distant from insured crops and provide

poor congruence with local conditions. A less common example is potentially insured crops

that are sufficiently resilient to the phenomena which forms the basis for the insurance, such

as drought-tolerant varieties covered by rainfall-based insurance or pest-resistant cotton to

pest infestation (Liu, 2013). In this paper we focus on these production-oriented sources of

basis risk and empirically estimate the amount of variability in yield coming from seasonal

weather variability.

The most common type of weather index insurance in India is rainfall insurance (Barnett

and Mahul, 2007; Giné et al., 2007; Akter et al., 2009). However, surprisingly little empir-

ical research has been conducted to confirm the underlying relationship between rainfall or

seasonal weather variability and yield variability. Barnett and Mahul (2007) suggest that

rainfall variability accounts for 50 percent of yield variability but do not support this figure

with data or a source. Giné et al. (2012) assert that as much as 90 percent of variation in

Indian crop production is driven by rainfall volatility, citing Parchure (2002) as their source.

But Parchure relies on a 1976 report by the Indian National Commission on Agriculture

(NCA), the details of which are somewhat opaque.2 Even less data exist on the relationship

between yield variability and other measures of covariate risk, such as temperatures, wind

speed, or the occurrence of natural disasters. Finally, to our knowledge, no data exist on

covariate risk’s share in explaining variance in crop yield, which is where we focus our atten-

tion. Previous studies that have attempted such measurements were constrained by data,

econometric techniques, and computing power so that they were unable to net out measure-

ment error and fully describe the sources of output variability. We attempt to rectify these

2According to Parchure (2002), the 90 percent variation is actually for cotton and groundnuts while
variation in yield due to rainfall variability is 45 and 47 percent for wheat and barley, respectively. Parchure
(2002) actually cites the 1976 NCA report as stating “that rainfall variations accounted for 50% of the
variability in agricultural yields.” This may be where Barnett and Mahul (2007) get their number. Examining
the report, specifically pages 47-8, these numbers were obtained from a linear regression “with yield as
the dependent variable and total rainfall during the five crop growth phases as the independent variable”
(National Commission on Agriculture, 1976). The 50 percent number is apparently the R2 on the regression.
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shortcomings and fill this research gap.

We examine the different sources of yield variability using a multilevel/hierarchical regres-

sion framework. This approach more fully accounts for the covariance structure of the data

than a standard regression framework and allows us to control for inputs at the parcel-level

and also to isolate the amount of yield variance due to parcel-level effects, household-level

effects, seasonal weather effects, village-level effects, and time. Using Bayesian methods,

we draw the underlying distribution of the random error term corresponding to different

sources of variability, thereby providing a quantitative measure of potentially insurable risk.

Bayesian methods are particularly useful because the underlying distribution for several of

the error terms turn out to be highly skewed and non-normal. Considering all sources of

yield variance, we find that seasonal variation in weather accounts for 19-20 percent of total

variance in agricultural production.

While we conclude that weather variability accounts for a much smaller share of yield

variability than has been previously argued, our results should not be interpreted as im-

plying that smallholder farmers do not need weather insurance. Rather, what they need

is better insurance - specifically, insurance that reduces the basis risk that results from a

low correlation between the index and crop loss. Furthermore, skewness in the distribution

for seasonal weather variability highlights the need for access to affordable risk-management

tools. Indeed this skewness is a sign that, despite the low share of seasonal weather variation

in yield variability, extreme weather events, while rare, are nevertheless potentially costly.

Motivated by these findings, in the second part of the paper we shift our focus to the

closely related concern of proper pricing of index insurance contracts. We provide a brief

quantitative reassessment of the index insurance contracts studied by Giné et al. (2007),

Giné et al. (2012), and Cole et al. (2013). We conclude that these contracts are overpriced.

This further underscores that flaws in the product are a proximate cause of low uptake and

that farmers may rationally prefer to focus their risk management choices on minimizing
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other sources of risk.

To tie our results as closely as possible to the issue of weather risk in agricultural produc-

tion, we use the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

household survey data from the same Indian villages studied by Townsend (1994) and Rosen-

zweig and Binswanger (1993). However, as a further extension, we use an expanded data set

that covers 24 newly added villages. In our analysis we use a panel of 10 cropping seasons

from 2009 through 2013. This time horizon has both advantages and disadvantages. The pri-

mary benefit is that over a short time frame parcel and household characteristics, along with

policy and technology, are unlikely to have significantly changed. By controlling for these

“fixed” effects, along with parcel-level variable inputs in each time period, we can measure

the variance in crop output resulting from weather risk. The primary shortcoming of our

dataset is that the 10 seasons of production we observe contains only one large-scale weather-

related natural disasters: the 2009 drought. This means that our measure of weather’s share

in total yield variability may be an underestimate.3 Nevertheless, our analysis sheds new

empirical light on the potential value of weather insurance during typical production periods.

Our five year time horizon is also likely to mimic the typical time scale under which farmers

in village India make investment decisions.

By using a multilevel approach to measuring the roles of idiosyncratic and covariate risk

in agricultural production in village India we contribute to three separate streams of research.

The first is the literature focused on production risk and insurance in the developing world.

Our aim is to connect two strands of this research. The first, originating with Townsend

(1994), Rosenzweig and Binswanger (1993), Rosenzweig and Wolpin (1993), and Kochar

(1999) has focused on the theoretical and empirical relationship between production, risk,

and insurance. The second focuses on interventions to help insure production against risk

3That said, India has experienced only two large-scale droughts in the last 25 years (2002 and 2009). The
Indian Meteorological Department considers a drought to have occurred when seasonal rainfall deficiency
falls is 26 percent below average rainfall.
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(Barnett and Mahul, 2007; Giné et al., 2007; Skees et al., 2007; Giné et al., 2008; Akter et al.,

2009; Gaurav et al., 2011; Clarke et al., 2012; Chantarat et al., 2013; Cole et al., 2013). We

empirically estimate the role different sources of variability play in determining the mean

and variance of crop output. We then use this information to inform the value and pricing

of index insurance products.

Our second contribution is to the nascent economics literature that applies multilevel

models to household data. Although we introduce no new methods, per se, in the paper, we

do contribute a methodological innovation by expanding the use, understanding, and adapt-

ability of multilevel modeling, Bayesian inference, and Gibbs sampling, all in the context of

household data.

The third body of literature to which we contribute is the empirical estimation of produc-

tion functions. Until recently it has been computationally difficult to estimate production

functions with multiple nested levels of data. While panel data fixed effects methods are

equivalent to a multilevel model with a single level, few alternatives exist for models with

a large number of nested levels. Production data are often collected at the farm or factory

level, which suggests at minimum a two-level model. Adding additional levels to account for

and distinguish among temporal and/or spatial variation can provide more efficient estima-

tion of production by more accurately modeling the data generating process. We contribute

to this strand of literature by comparing production function parameter estimates obtained

by standard ordinary least squares to multilevel regression estimates obtained by maximum

likelihood and Bayesian estimation techniques.

2 Data

To conduct our empirical analysis, we use household data from villages in India. These

data were collected as part of the Village Level Studies/Village Dynamics Study of South
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Asia (VDSA, 2015). The data set combines high and low frequency household data from

30 Indian villages. The villages include the three studied by Townsend (1994) and the ten

studied by Rosenzweig and Binswanger (1993). However, while much of the previous research

has relied on the low frequency data, we utilize a newly available high frequency data set

covering the years 2009 through 2013. These data include monthly household observations

on input purchases and labor expenditure for on-farm activities and crop production. The

added value of a high frequency data set is that, with multiple crops on multiple parcels

for multiple seasons in a single year, it provides much more detailed and accurate farm

production information than the low frequency data.

We utilize monthly parcel-level data aggregated to the seasonal level. We focus on five

crops: paddy rice, sorghum, wheat, maize, and cotton. Together these crops account for 60

percent of total crop observations in the VDSA and cover 78 percent of the total parcel-

level observations.4 This provides us with 11,942 parcel-level observations. Rice is the

most common crop, accounting for 46 percent of total observations. Next most common

is sorghum, accounting for 23 percent of observations. Wheat constitutes 14 percent of

observations while maize and cotton account for the remaining 9 and 8 percent of observations

respectively.

The locations of VDSA villages provides us with a great deal of heterogeneity in climate,

weather, crop choice, and cultivation practices. Statistics describing these data, by crop,

are presented in Table 1. Twenty-seven villages cultivate at least two crops, generally a

single crop in each of the two growing seasons. Only two villages cultivate all five crops.

Cotton is the most input intensive crop, using more labor, fertilizer, mechanization, and

4With the exception of pigeon pea, a perennial crop, the five crops used in our analysis are the five most
frequently observed crops in the data set. We include cotton instead of pigeon pea for two reasons. First,
pigeon pea is a perennial crop and therefore may be treated by farmers differently than annual crops when
considering insurance. Second, cotton is one of the crops considered by Clarke et al. (2012) in their product
design and ratemaking for insurance contracts in Gujarat. Thus, despite it being a non-food crop, we include
it to bring our analysis more closely in line with existing literature.
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pesticide than any other crop. Sorghum is the least labor intensive while wheat uses the

least fertilizer, mechanization, and pesticide. In total, our 11,942 parcel-level observations

come from 5,100 unique parcels operated by 1,079 distinct households, in 30 villages, farming

across 10 seasons. We exploit this nested data structure in our empirical analysis.

One final source of variation in the data structure, which plays an important role in our

analysis, is the number of time observations for each crop. Three crops (rice, wheat, and

maize) are grown in both the Kharif monsoon season and the post-monsoon Rabi season.

Sorghum is only grown in Rabi while cotton is only grown in Kharif. The limited time series

for these crops may affect our estimation of seasonality’s effects on yield variability, albeit

in an unknown way.

3 Econometric Framework

3.1 Ordinary Least Squares

We begin by estimating a simple linear regression for yield. Let yis denote the log of yield

for parcel i in season s. We estimate

yis = Xisβ + αs + εis (1)

where Xis is a matrix of data and β is a vector of regression coefficients associated with

various crops. In order to account for the spatial dimension and allow our proxy for weather

to vary across both location and time, the seasonal fixed effect αs is an indicator for each

time period (t = 10) in each village (v = 30). We assume the error term is εis ∼ N (0, σ2) so

that yis ∼ N (Xisβ + αs, σ
2), where β and σ2 are regression and variance parameters which

are season independent while αs depends on the season.

We note several drawbacks associated with this linear estimation of the production func-
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tion. First is that it precludes one from discerning the role of weather in yield variability.

Equation (1) can estimate the impact of parcel-level inputs on yield at each point in time

as well as the impact of a seasonal weather dummy on yield. But because these variables

impact mean yield, the specification does not allow us to measure the share of yield vari-

ability (σ2) represented by seasonal variability in weather. A second drawback is that OLS

limits our ability to control for additional clustered effects, such as parcel, household, village,

or temporal effects. While changes in season clearly impact the effectiveness of parcel-level

inputs, equally relevant effects may exist at these other levels. Some households may be

more efficient in their application of labor compared to others, while some parcels may be of

better quality, resulting in less need for, say, fertilizer. Some households may live in villages

in states with favorable agricultural policy resulting in better access to inputs. Finally, while

we do not expect much technological change between 2009 and 2013, the quality of inputs

continues to evolve, which may impact yields over time. Even if it were computationally

feasible to estimate season-specific, household-specific, and parcel-specific parameters using

OLS, such grouped data would violate the assumption of independence for all data (Corrado

and Fingleton, 2012). A third drawback, and perhaps the most important for us, is that

OLS requires the variance terms to be normally distributed. While in many applications this

assumption is appropriate, we should not expect weather events to be normally distributed.

If time-specific effects have a highly skewed distribution, OLS will produce biased parameter

estimates and estimates of risk severity may ignore extreme events.

3.2 The Multilevel Model

A multilevel or hierarchical modeling strategy addresses the first two drawbacks associated

with the standard linear approach to estimation.5 First, multilevel models offer a natural way

to assess the role of seasonal changes in weather on variation in yields by explicitly modeling

5Gelman and Hill (2007) provide an introduction to multilevel analysis.
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the variance, not just the mean of the data. This allows us to measure the different sources

of variance in yields. In our case, a multilevel approach also allows us to disaggregate total

variance in yields into its multiple sources, so as to measure the relative contribution of

seasonal weather risk in production. Second, a multilevel approach allows us to control for

each grouping of the data without adding to the computational burden and without violating

independence assumptions.

For expository purposes we start with an illustrative example of a simple two-level model

in which realizations of yields are grouped within seasons. Let yns denote the log of an

observed yield, n, realized in season s. We estimate

yns = Xnβ + αs + εns (2a)

αs = µ+ νs (2b)

where Xn and β are as previously defined, and αs is a seasonal effect that is a function of

an overall mean, µ, and a random disturbance term, νs. We assume that εns ∼ N (0, σ2
ε ),

νs ∼ N (0, σ2
ν), and εns is independent of νs.

In order to make our parameter of interest explicit, we can rewrite equations (2a) and

(2b) in terms of a probability distribution so that

yns ∼ N (Xnsβ + µ, un), (3)

with un ≡ σ2
ν + σ2

ε . The above distribution is obtained by substituting (2b) into (2a) and

using the independence of εns and νs. Defining the regression equation in this way highlights

the very specific dispersion structure of the residual, which is where our interest lies. It also

allows us to easily define the intraclass correlation coefficient (ICC),
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ρ =
σ2
ν

σ2
ν + σ2

ε

, (4)

which is similar to the proportion of explained variance in an OLS regression.

The value of a multilevel model becomes obvious as we add additional levels. In our

analysis we can view each observation on yield, yn, as coming from a parcel group i; each

parcel group as being nested within a household, h; each household as observed during a

specific season, s; each season occurring in a unique village, v; and each village existing at a

given time, t.6 We can write the multilevel model as:

Level 0 (yields, n = 11, 942) : yn = Xnβ + αihsvt + εn (5a)

Level 1 (parcels, i = 5, 100) : αihsvt = αhsvt + νihsvt (5b)

Level 2 (households, h = 1, 079) : αhsvt = αsvt + νhsvt (5c)

Level 3 (seasons, s = 240) : αsvt = αvt + νsvt (5d)

Level 4 (villages, v = 30) : αvt = αt + νvt (5e)

Level 5 (time, t = 10) : αt = µ+ νt (5f)

where again Xn is a matrix of input data and β is a vector of regression coefficients associated

with the various crops.

At level 0 the model estimates the log of yield as a function of inputs, similar to that

in equation (1), with yields being a function of a specific parcel i and an idiosyncratic error

term εn ∼ N (0, σ2), where σ2 is a constant variance parameter which we assume does not

depend on i, h, s, v, or t. Each n observation comes from a parcel cluster i which we assign

6Note that i, h, s, v, and t can be understood as functions of n so that each unique data point corresponds
to the index n, each data point can be identified with a unique parcel i, each parcel can be identified with a
unique household h, each household experiences a unique season s, each season occurs in a unique village v,
and each village exists at unique time t.
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a unique intercept, αihsvt. This parcel-level intercept allows the relationship between inputs

and yield to differ across parcels depending on parcel-level characteristics. While some parcel

characteristics can be observed, many are difficult to measure or costly to observe. Such

characteristics include soil micro-nutrients, grade, and aeration or composition. By including

a unique intercept term for each parcel we can control for these parcel characteristics.

Level 1 of the model groups parcels within households. Here parcel intercepts, αihsvt,

are a function of household characteristics, αhsvt, and a random disturbance term, νihsvt ∼

N (0, σ2
1), where σ2

1 is a constant variance parameter. We assume that the νihsvt terms are

independent of each other and that the vectors εn and νihsvt are independent. The household-

level intercept allows variation in parcel-level production to be dependent on household char-

acteristics. In most applications, the analyst attempts to control for unobserved household

ability through proxy variables such as age or education. The multilevel approach allows us

to control for any unobserved household-level characteristics by assigning each household a

unique intercept term without the need to rely on proxies. The use of a single disturbance

term for all data points n corresponding to a given parcel group further enhances this control

by imposing a covariance structure which is consistent with variation at the parcel group

level.

Level 2 of the model groups households within seasons. Here household-level intercepts,

αhsvt, are a function of season, αsvt, and a random disturbance term, νhsvt ∼ N (0, σ2
2),

where σ2
2 is a constant variance parameter.7 The season-level intercept allows variation in

household-level efficiency to depend on seasonal weather events. While household ability is

often viewed as time invariant, it will be time dependent if household ability is diminished

or enhanced by changes in weather (Kochar, 1999). Households experienced in dealing with

droughts may find their ability diminished by flooding or cyclones. A priori, there is no

7As in the case of the level 1 disturbance terms, the terms νhsvt are assumed to be independent of each
other. The corresponding vector νhsvt is assumed to be independent of εn and νihsvt. The same group-level
independence assumptions hold for all levels.
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reason to assume that seasonality or changes in weather have a constant or stationary effect

on household characteristics. By allowing household-level intercepts to vary across season,

we are relaxing the assumption that household characteristics are either time invariant or

affected by weather in the same way each season.

Level 3 of the model groups seasons within villages. Here season-level intercepts, αsvt,

are a function of a village, αvt, and a random disturbance term, νsvt ∼ N (0, σ2
3), where

σ2
3 is a constant variance parameter. The village-level intercept allows for season-on-season

variation of average yields within each village. By making seasonality a function of both

village and time, we are able to account for both the spatial and temporal nature of weather.

This allows our model to account for the fact that not all crops are grown in each village

and in each time period.

Level 4 of the model groups villages within time. Here village-level intercepts, αvt, are

a function of time, αt, and a random disturbance term, νvt ∼ N (0, σ2
4), where σ2

4 is a

constant variance parameter. The time-level intercept allows variation in village-level effects

to depend on time. While our data cover only five years, we cannot rule out changes in

policy, technology, or both during this period. In India, the introduction of new technologies

and the implementation of new policies frequently occur at the state level and thus will not

uniformly effect all villages. By allowing our village-level intercepts to vary across time we

can control for unobservable technological and political changes.

Level 5 of the model defines the temporal intercepts as a function of an overall mean, µ,

and a random disturbance term, νt ∼ N (0, σ2
5), where σ2

5 is a constant variance parameter.

Having controlled for all other potentially relevant sources of yield variability, we interpret

seasonal variation as coming solely from weather events.

The model represented above by equations (5a)-(5f) and its dependence/independence

structures can be summarized as a single model in terms of a probability distribution with

a special error structure which is a sum of independent disturbance terms with a nested
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dependence on indexes:

yn ∼ N (Xnβ + µ, un), (6)

where un is a specific covariance matrix which is the sum of six covariance matrices cor-

responding to the disturbance vectors εn, νihsvt, νhsvt, νsvt, νvt, and νt from each level.

Considered as a single error term, this error structure is non-trivial, though the expression

shows how it works intuitively. Equation (6) makes clear that our parameters of interest are

not the additive non-interacting scale terms (the α’s) but the components of the error term

(σ2, σ2
1, σ2

2, σ2
3, σ2

4, σ2
5). In particular, our model, whether represented by equations (5a)-(5f)

or by equation (6), shows that the main goal in uncertainty quantification is to estimate

the disturbance terms. Indeed, this is the key to evaluating the share of variance in yield

corresponding to each level in the hierarchy.

The ICC for the five-level model is the percentage of the total variance that is explained

by the variance within clusters of groups. So, the correlation between realizations of yield

within the same parcel is

ρ(parcel) =
σ2
1∑5

i=0 (σ2
i )
. (7)

The correlation between realizations of yield within the same household is

ρ(household) =
σ2
2 + σ2

1∑5
i=0 (σ2

i )
. (8)

The correlation between realizations of yield within the same season is

ρ(season) =
σ2
3 + σ2

2 + σ2
1∑5

i=0 (σ2
i )

. (9)

The correlation between realizations of yield within the same village is
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ρ(village) =
σ2
4 + σ2

3 + σ2
2 + σ2

1∑5
i=0 (σ2

i )
. (10)

And, the correlation between realizations of yield during the same time period is

ρ(time) =
σ2
5 + σ2

4 + σ2
3 + σ2

2 + σ2
1∑5

i=0 (σ2
i )

. (11)

By construction the ICC increases as we move to higher levels of aggregation. Thus, we also

calculate each level’s contribution to total variance in the model. This is simply the variance

at each level divided by un, the total variance in yields.

3.3 Bayesian Estimation of the Multilevel Model

While multilevel models address the first two drawbacks of OLS estimation, they still rely on

the standard, though potentially unsupported, assumption of normality of the disturbance

term at each level. We can verify if the normality assumption placed on each of the random

disturbance terms is reasonable using a likelihood ratio (LR) test. We visualize the results

of these tests using zeta profile plots, which plot the sensitivity of the model fit to changes

in values of particular parameters. While these plots are not equivalent to drawing the un-

derlying distributions of the estimators, they represent a similar idea and can be interpreted

as representing the underlying distributions. First, we estimate the model in equations (5a)-

(5f) using maximum likelihood. Then we hold a single parameter fixed and vary the other

parameters, assessing the fit of each new iteration compared to the globally optimal fit using

the LR as our comparison statistic. We then apply a signed square root transformation to

the LR statistic and plot the absolute value of the resulting function, |ζ|, in comparison

to the estimated parameter values. The zeta profile plots resulting from the model fit to
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equations (5a)-(5f) are presented in Figure 1.8 Parameters with underlying normal distribu-

tions have straight line zeta profile plots. When this is the case these parameters provide

a good approximation to the normal distribution and standard confidence intervals can be

used for inference. When zeta profile plot lines are not straight, the normal distribution is

a poor approximation of the underlying distribution. For parameter estimates on data, a

non-normal distribution simply requires an adjustment of the relevant test statistics. But,

if the underlying distributions of our disturbance parameters are non-normal, we are faced

with a violation of the normality assumptions of the error term. In Figure 1, zeta profile

plots for the data, the parcel disturbance term (σ1), and the idiosyncratic disturbance term

(σ) represent good approximations of normality. The zeta profile plot for the weather distur-

bance term (σ3) and the village disturbance term (σ4) are slightly skewed. The zeta profile

plot for the household disturbance term (σ2) and the time disturbance term (σ5) are highly

skewed and cannot be assumed to follow a normal distribution. Thus, we cannot assume

normality of the individual error terms nor the composite error term. Since we do not, a

priori, know the distribution of εn, maximum likelihood methods cannot be used to reliably

estimate our model.

We address this drawback to classical estimation of multilevel models by adopting a

Bayesian framework and using Markov Chain Monte Carlo (MCMC) methods to obtain

posterior estimates. For estimation of posterior distributions we use the Gibbs sampler,

which iteratively constructs a sequence of samples from the univariate random values of

each response variable, and of each model parameter, conditional on all other parameters

and variables. This method allows us to compute all features of the marginal and joint

distributions because the marginal samples are iteratively fed back into the conditional pos-

terior densities of all other parameters and variables for each sampling. This allows us to

8Given the large number of parameters (20 coefficients and 6 disturbance terms) we prefer the graphical
representation of the outcomes of the LR tests. Numerical results of the tests are available from the authors
upon request.
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calculate unbiased point estimates and confidence intervals for all variables without recourse

to normality assumptions.

We define the Bayesian estimator using our illustrative two-level model and then provide

parameter definitions for the specific model defined by equations (5a)-(5f).9 For a general

two level model, let ykm be a unique observation k = 1, ..., K from the group m = 1, ...,M .

Within each group m, the data are distributed according to a particular distribution G

with parameter γ such that ykm ∼ G(γm). We assume that parameter γm comes from a

distribution L with parameter λ such that γm ∼ L(λ). Finally, we assign a distribution to

the hyperparameter λ so that λ ∼ Q(a, b), where a is the mean and b is the variance of

the distribution. The joint posterior distribution of all unknown parameters is derived using

Bayes’ theorem:

p(λ, γ|y) ∝ p(y|γ, λ)p(γ|λ)p(λ) (12)

where y = (y11, ..., y1K , ..., yM1, ..., yMK) is all the data, γ = (γ1, ..., γM) is the group level

parameter, and λ is the population parameter. The density of the data is obtained through

p(y|γ, λ) =
M∏
m=1

K∏
k=1

p(ykm|γm, λ). (13)

This is an independence assumption, and the individual density, p(ykm|γm, λ), is assumed

to be known. Again by the independence assumption, the prior for the group level effect is

assumed to be

p(γ|λ) =
M∏
m=1

p(γm|λ). (14)

From the joint posterior distribution we can derive the conditional posterior distributions.10

9Cameron and Trivedi (2005) and Hanmaker and Klugkist (2011) outline Bayesian estimation of multilevel
models.

10In terms of the independence assumptions made for the MLE multilevel model, assumption (13) corre-
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The Bayesian estimator for our multilevel model given by equations (5b)-(5e) can be

stated by redefining the model in probability terms:

Level 0 : yn ∼ N
(
Xnβ + αihsvt, σ

2
)

(15a)

Level 1 : αihsvt ∼ N
(
αhsvt, σ

2
1

)
(15b)

Level 2 : αhsvt ∼ N
(
αsvt, σ

2
2

)
(15c)

Level 3 : αsvt ∼ N
(
αvt, σ

2
3

)
(15d)

Level 4 : αvt ∼ N
(
αt, σ

2
4

)
(15e)

Level 5 : αt ∼ N
(
µ, σ2

5

)
. (15f)

The hyperpriors, or the prior distributions of the hyperparameters, are defined as:

Hyperpriors : µ ∼ N (a, b)

σ2
4 ∼ IG (d4, g4)

σ2
3 ∼ IG (d3, g3) (16)

σ2
2 ∼ IG (d2, g2)

σ2
1 ∼ IG (d1, g1)

σ2
0 ∼ IG (d0, g0)

where IG is the inverse gamma distribution. The assumption that the priors are distributed

inverse gamma is a common assumption in Bayesian econometrics in order to facilitate the

sponds exactly to assuming that the error terms (εn) are independent of each other while assumption (14)
corresponds exactly to assuming that the elements in each group-level ν term are independent of each
other. The Bayesian multilevel setup in which each group-level parameter is assumed to have its own prior
distribution is consistent with assuming in the MLE multilevel model that εn and the ν’s are independent.
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mathematical analysis via the Gibbs sampler. We select values for the distributions to

ensure that priors are uninformative. We then use a burn-in period of 5,000 iterations and

an additional 5,000 iterations to ensure convergence of the iterative simulations and sufficient

mixing of the Gibbs sampler.

4 Econometric Results

We present the results from a large complement of regressions in Tables 2 - 4. Table 2

presents a trio of results from fitting the production function using OLS, MLE, and Bayes.

Table 3 presents estimated variances, ICCs, and variance shares from the MLE and Bayesian

versions of the production function. Table 4 presents both MLE and Bayesian estimation

results from crop-by-crop production functions.11 All models are estimated using the log of

yield as the dependent variable and log values of inputs as independent variables.12 Hence,

point estimates can be read directly as elasticities.

4.1 Production Function Results

The three production functions presented in Table 2 rely on the same sample and contain

the same set of inputs. To account for heterogeneous input response across crops, we allow

all slope and intercept estimates to vary by crop. Model 1 is the classical OLS regression

as represented by equation (1). This regression model contains fixed effects for seasons

but does not account for the multilevel structure of the data. Models 2 and 3 are the

MLE and Bayesian regressions and explicitly account for the clustering of observations at

the parcel, household, season, village, and temporal levels. The point estimates from the

Bayesian regression are based on posterior density estimates derived from iterating from our

11In the interests of parsimony we focus on the residual estimates for the crop specific models. The point
estimates on inputs are presented in Appendix Table A1.

12Given the prevalence of zero values in the input data, and to a lesser extent in the output data, we use
the inverse hyperbolic sine transformation to convert levels to logarithmic values.
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uninformative priors. Results from these regressions point to a fairly robust set of basic

patterns that are repeated with few exceptions. These include (i) positive and significant

production relationships between yields and measured inputs (labor, fertilizer, mechanization

and pesticides), and (ii) diminishing returns to inputs other than labor. We observe only one

instance in which the point estimate for an input is negative and significant (for pesticides in

the case of wheat). Returns to scale appear to to be increasing for all crops. The Bayesian

estimation of the production function generates point estimates that are broadly similar in

sign, magnitude, and significance to those of the OLS and MLE multilevel regressions.

Table 3 reports estimated variance parameters (Panel A), ICCs (Panel B) and variance

shares (Panel C) for the multilevel MLE and Bayes regressions. These statistics establish

the key findings that inform our insights into the potential role of weather index insurance.13

We focus attention on Panel C of Table 3, which compactly summarizes the data expressed

in the upper panels of the table. Reading down the rows of the table allows us to assess

the decomposition of variance and, by extension, the relative importance of each level in

explaining overall variance in yields. We find for the MLE specification (Model 2 reported in

Table 2) that 23 percent of the total variance in yields comes from between-parcel differences,

19 percent is attributed to between-season differences, 15 percent comes from between-village

differences, three percent is attributed to differences across time, and 40 percent of the total

residual is idiosyncratic noise. In the Bayesian specification (Model 3 reported in Table 2)

24 percent of total variance in yields comes from between-parcel differences, 20 percent is

attributed to between-season differences, 15 percent comes from between-village differences,

six percent is attributed to differences across time, and 35 percent is idiosyncratic noise.

An intuitive interpretation of these results is that much of the differences observed in yields

reflects differences between parcels, such as soil quality. Household or farmer capability,

13An expanded set of results from models estimated using different hierarchical structures is provided in
Appendix Tables A2 and A3.

21



relative to other sources of variability, is unimportant in explaining differences in yields. In

other words, good farmers cannot make up for bad soil but bad farmers can still prosper if

they have good soil. Similar to Townsend (1994) and Rosenzweig and Binswanger (1993) we

find that idiosyncratic sources of risk play a much larger role in determining observed yields

than covariate sources. Unlike Townsend (1994) and Rosenzweig and Binswanger (1993),

we are able to quantify these differences. Considering all sources of variance in yields, only

37-41 percent comes from covariate sources while the remaining 59-63 percent comes from

idiosyncratic sources. Thinking in terms of insurable weather risk, only 19-20 percent of the

variability in crop yield is due to seasonal weather variation. These basic patterns highlight

the relatively small importance of between-season yield variance compared with other sources

of yield variance.14

Strictly speaking, the non-normality of the error term means that the OLS and MLE

regressions are misspecified. Accordingly, we would expect estimates from these models to be

biased. However, in our application, only the disturbance terms associated with households

and time are highly skewed and non-normal (recall Figure 1). Furthermore, these two sources

of variance make up a very small share of total variance. Thus, any bias that is introduced

through model misspecification is mitigated by the small impact of the skewed noise term

on the overall estimation. We highlight that this is an artifact of the current application and

data. If non-normal variation accounted for more of the total variance we would expect to

find greater bias in our OLS and MLE estimates.

Figure 2 reports distribution profiles based on the Bayesian regression results for the

associated sources of variance measured by Model 3 in Table 2. These histograms are con-

structed from the posterior distributions estimated using the Gibbs sampler. We can draw

14Note that the share of variance that remains unexplained is not the appropriate measure of model fit.
The Akaike Information Criterion (AIC) and Deviance Information Criterion (DIC) reported in Table 2
provides a measure of model fit. In both the AIC and DIC, lower values correspond to better model fit.
The DIC is a generalization of the more common Bayesian Information Criterion (BIC) and is used here to
facilitate comparison between the ML and Bayesian estimations of the same models.
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several conclusions from this graph. First, several of the variance terms are not normally

distributed, which violates the normality assumption in OLS and non-Bayesian multilevel

regression. Second, normal confidence interval calculation for the parameters will be inac-

curate. Third, the long right-hand side tails in the distributions for households and time,

and to a lesser extent season, indicates that these controls by themselves are insufficient to

explain the observed yield variability in a classical setting. Said differently, our model relies

on indicators for household ability, occurrences of weather, and technical change and does

not take into account their severity. The skewed output of our Bayesian analysis hints that

while most households are similar in ability there are a few outlying farmers with exceptional

ability. Similarly, while weather events account for only 20 percent of variance in yields, se-

vere weather events remain important in considering tools to mitigate risk. Our actuarial

analysis in Section 5 addresses this limitation in our regression analysis by separately as-

sessing the importance of weather severity in determining the potential benefits of weather

index insurance for rural households.

4.2 Variance Results by Crop Type

Up to this point, our analysis has accommodated heterogeneity in the input-response curves

of the crops under consideration by allowing slopes and intercepts to vary across crops.

By pooling these data, however, the variance results reported in Table 3 are implicitly

derived under the assumption that the same variance structure of the hierarchical model

applies to all crops under consideration and that, by extension, the same weather risk profile

applies to each crop. We now relax that assumption and re-estimate the MLE and Bayesian

regressions, in each case using five separate, crop-specific sub-samples of the data. Our goal

is to allow for a more comprehensive assessment of the variance structure of yields, to gain

additional insights into the nature of weather risk exposure among farmers in the sample.

The new samples vary in size and coverage, which also permits us to limit the influence of
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rice in our results, since rice dominates the pooled sample by contributing roughly half of all

observations. In three cases (rice, wheat, and maize) we observe data across all 10 seasons.

In the case of sorghum and cotton we observe data for only five seasons.

As a complement to the data reported in Table 3, we present in Table 4 a full set of

estimated variance parameters, ICCs, and variance shares for the crop-specific versions of

our regressions.15 As in the case of the regressions with the pooled samples, the MLE

and Bayesian regressions explicitly account for the clustering of observations at the par-

cel, household, season, village, and temporal levels. The point estimates from the Bayesian

regression are based on posterior density estimates derived from iterating from our unin-

formative priors. As before, we focus attention on Panel C of Table 4. Once again we see

a close correspondence between the MLE and Bayesian results. Reading across the table,

however, we observe substantial variation in the sources and relative importance of each level

in explaining overall variance in crop-specific yields. For example, over 30 percent of vari-

ance comes from between-parcel differences for rice and maize, compared with less than two

percent for sorghum and cotton. Of particular importance for index insurance, we observe

only moderate variation in the contribution of between-season weather differences, which

range from 14 percent of variance in the case of rice, to as much as 21 percent in the case

of wheat and cotton. We also find more notable differences between the estimated variances

from MLE and Bayesian regressions, with implications for the role of non-normality and the

inability of the MLE approach to properly account for skewness in several of the disturbance

terms. As noted above, to the extent that non-normal errors account for more of the total

variance one would expect to find greater bias in the OLS and MLE point estimates vis-à-vis

the Bayes estimates. This is evident when level variance terms tend to be small, resulting

in MLE estimates that collapse to zero while Bayesian estimates are small but non-zero.

15We relegate the discussion of the point estimates for parcel-level inputs to Appendix A and Appendix
Table A1.
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5 Actuarial Values of Rainfall-Index Insurance Risk

The likely importance of extreme and infrequent weather events in yield variability, evidenced

by the skewness in the posterior distribution of σ2
3, highlights the need for smallholder farm-

ers to have access to affordable risk-management tools. In other words, despite the low share

of seasonal weather variation in yield variability, our data still suggest that potential insur-

ance purchasers need to consider weather risk, since extreme weather events, while rare, are

nevertheless potentially costly over the long run. This motivates us to ask whether tools for

managing this type of risk are adequately accessible. In this section, we complete our anal-

ysis of weather risk and agricultural production with a brief quantitative assessment which

suggests that rainfall index insurance, as currently marketed in village India, is overpriced.

Our parcel-level panel data are not adapted to measuring the severity of weather events.

In order to estimate the actuarial cost of these events, we rely on rain-index insurance

contracts which ICICI Lombard offers in the region and which form the basis for the analysis

conducted by Cole et al. (2013) and Giné et al. (2007). The terms of these contracts are

district-dependent, and are the sum of three individual contracts in the three successive

phases of the monsoon season. The start and finish dates defining each of the three phases

are determined for each village for each year, as a function of the daily evolution of rainfall for

the village’s corresponding weather station.16 In Phases I and II, corresponding to planting

and heading, a drought risk exists. In Phase III, corresponding to harvest, risk arises from

excess rain. In Phase I and II the contract pays zero Indian Rupees (Rs.) if the cumulative

rainfall exceeds a certain “strike” value k. It then pays a number of Rs. which decreases

16Specifically, Phase I begins on the day when accumulated rainfall since the traditional monsoon start
date exceeds 50mm. In Eastern and Central India, monsoon start date is generally considered 1 June, so
Phase I begins for a village when accumulated rainfall since 1 June exceeds 50mm. In Western India monsoon
start date is figured as 1 July. If accumulated rainfall in the first month fails to exceed 50mm, then the first
phase automatically begins on the first of the next month. Phase I and II are each 35 days in length. Phase
II begins the day after the close of Phase I. Phase III begins the day after the close of Phase II. In contrast
to the first two phases, Phase III lasts for 45 days (World Bank, 2011).
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linearly with the cumulative rainfall in that phase (the value reported in the contract is the

slope’s absolute value m), and if this rainfall amount reaches down to or beyond a certain

low “exit” number z, the contract pays a maximum value M , typically M = 1000 Rs.17 The

contract is therefore structured so as to have a piecewise linear payout which is typically

discontinuous, with a single jump up as rainfall goes from the exit value z to lower values

(See Figure 3). In Phase III, the contract is structured in an opposite way: the payout equals

zero for cumulative rainfall below the strike value k, it equals M (typically 1000 Rs.) above

the exit value z, and it grows linearly with positive slope m for cumulative rainfall between

k and z. The linear increasing or decreasing portions of the contract structure means that

its actuarial value will be a bona fide quantitative measure of the severity of drought and/or

flood risk. This would not be the case if the contract paid only either zero or a fixed lump

sum, since in that case, the actuarial value would only measure the probability of a payout,

not drought/flood severity.

We utilize daily rainfall data from 16 of the VDSA villages selected to provide a wide

geographic distribution of Indian states with semi-arid, tropical wet-and-dry, and humid

subtropical climates from Andhra Pradesh to Bihar for the same years as our regression data,

which includes the 2009 drought year. Our method of calculating the actuarial value of the

payouts differs from that used in previous studies of the same contracts, which generally take

a long view and utilize rainfall data extending as far back as four decades (Parchure, 2002;

Clarke et al., 2012; Cole et al., 2013).18 We instead use five years of rainfall data to determine

17Typically, the payout amount at the exit value z, which equals (k − z)m, is less than the maximum
payout M after exit, though it can sometimes be higher; such an odd structure might be construed as a
contract design error, but does occur in commercial practice; we have encountered one instance of this in
our analysis of the ICICI Lombard contracts. The probability of the rainfall equaling exactly z millimeters
is extremely low, which means that there is usually no ambiguity as to whether to pay the value (k− z)m or
the typically larger value M . We have identified one important exception to this situation, that in which the
exit equals 0. ICICI Lombard proposes such contracts in relatively arid districts. In that case, the ambiguity
would pose a problem, and the company pays the exit max value M when rainfall is 0. We have taken this
into account in our calculations.

18Cole et al. (2013) provide a straightforward and representative explanation of the standard method of
calculation. They utilize 36 years of rainfall data from five villages in Andhra Pradesh and 38 years of rainfall
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rainfall in each of the three phases in 16 villages. Because of the wide geographic distribution

of our data, this averaging encompasses a number of differing weather conditions, which

can be considered as a proxy for following a specific village over a long period of time, and

ensures that a sufficient number of extreme weather events are included, a particularly useful

feature in this region where droughts are sporadic. Additionally, we believe that the shorter

time horizon utilized in our calculation more closely approximates the decision horizon for

smallholder farmers in India. Given that the average age of the head of household in our

data is 49 years, rainfall information from 38 years ago is not likely to figure into insurance

purchase decisions.19

Using our five year time horizon combined with wide geographic diversity, we calculate an

estimate of the actuarial value of the payouts for the 3-phase contract by averaging payouts

over all 171 village-year-phase combinations.20 To illustrate the effect of how different strike

and exit values effect the insurance contract’s value, we repeat the calculation for three

contracts reported in Giné et al. (2007) and Cole et al. (2013), with low, medium, and high

payout structures, and report on the payouts’ actuarial values and payout probabilities. The

results from this analysis are given in Table 5.

The three contracts we consider here are representative of products currently marketed

to smallholder farmers in the region and were chosen so as to present the most conservative

analysis possible.21 Under the most generous payout structure (“high payout”), the proba-

data from three villages in Gujarat to calculate values for each of the three contract phases.
19Another instance of using wide geographic diversity to study the distribution of rain-indexed insurance

in India can be found in Giné et al. (2007), where available commercial premia, strikes, and exits, were
averaged over a number of different districts/weather stations. See Appendix C for a detailed justification
of this approach.

20We have five years of rainfall observations for three villages in Andhra Pradesh and two villages in
Karnataka. Due to data collection issues the VDSA only reports three years of rainfall data for four villages
in each Bihar and Odisha and three villages each in Jharkhand. Given that the contracts under analysis
have three phases, this gives us 171 rainfall data points.

21We have included in Appendix C another set of contracts, from Cole et al. (2013) as robustness checks
to the values presented in the paper. These contracts have less favorable terms, and would paint a picture
of the options available to micro-insurance customers which is arguably too extreme. We have presented our
analysis of these less favorably marketed contracts in Appendix Table A4 for comparison purposes and for
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bility of payout is 14 percent. This represents, on average, little more than one payout in

one phase over a two-year period. Judging by the examples of contracts reported in Cole

et al. (2013), it is more likely that smallholders would be offered contracts in the medium or

low payout ranges, where payout probabilities are 12.3 and 8.8 percent respectively. Farmers

who do not look ahead more than three years in planning their activities would presumably

find little incentive to purchase insurance where, on average, a 12 percent figure means that

they would be as likely as not to see no payout within their planning horizon, and an eight

percent figure would br even less favorable. This infrequency of payout on what amounts to

income insurance is likely to compound the friction caused by slow diffusion of uptake. For

example, studying households in Gujarat, Cole et al. (2014) find that demand for insurance

is highly sensitive to whether payouts occurred in the village in the prior year. We suspect

that in the villages we consider, only the high payout contract would likely be of interest to

farmers, and then only if they perceived its premium as close to fair. Table 5 reports those

actuarially fair premia.

Cole et al. (2013) report expected payouts as percentages of true premia paid to the ICICI

Lombard insurance company for two villages in Andhra Pradesh in 2006. These numbers

are equivalent to saying that the premium is computed by multiplying the actuarially fair

premium by a loading factor, 1 + λ, through the formula:

1 + λ =
paid price

actuarially fair price
. (17)

Thus λ is a proportional transaction cost which, in principle, reflects the cost to the company

of doing business. The loading factors’ transaction cost parameters computed from reported

premia (1.47, 2.32, 3.86), are very large compared with other weather insurance markets: a

typical value of λ in the US and other countries is between 0.1 and 0.2. For instance, the

Poverty Global Practice Group at the World Bank reports values in the US, Burkina Faso,

the sake of completeness.
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and Senegal of λ = 0.10 (de Nicola, 2015). While it may not be possible for insurers to offer

contracts with such low values of λ in India, our actuarially fair value for the high-payout

contract, 191 Rs., can be compared directly to the price quoted by ICICI Lombard in Cole

et al. (2013) for the same contract, which is 280 Rs. In this case, which is the most favorable

comparison we can draw with commercial contract prices, the high-payout contract would

thus represent a loading factor of 1.47, i.e. a value of λ = 0.47, a substantially higher value

than those observed in other regions, but still much lower than those inferred from the two

villages reported in Cole et al. (2013). Such excessive loading factors, and not apparent

failure of households to recognize the value of insurance, appear to be a key element in

preventing farmers in village India from accessing insurance as a risk-management resource

and further explains the low uptake rate of weather index insurance.

6 Conclusion

Despite long standing evidence that rural households are unable to fully insure covariate risk,

few studies have attempted to measure just how large a role covariate events, such as weather,

play in agricultural yields. We address this research gap using agricultural production data

covering 11,942 parcel level observations from India. Using a multilevel/hierarchical regres-

sion framework, we estimate the different sources of yield variance. This approach controls

for inputs at the parcel-level and also isolate the amount of yield variability attributed to

parcel-level effects, household-level effects, seasonal weather effects, village-level effects, and

time effects. Adopting Bayesian estimation techniques allows us to account for the highly

skewed distribution of several of the disturbance terms. Overall, we find that variability

in weather makes up only a small share of the total variance in crop yields. This suggests

that basis risk on the production side (i.e., low correlation between the weather index and

yield loss) is substantial. The majority of variation in yields does not come from seasonal
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variability, which is our proxy for rainfall or weather variability. Rather, the majority of

variation in yields comes from differences in parcels and from the random disturbance term

which captures idiosyncratic events which would be, by definition, not covered by index in-

surance. Given the long history of evidence that farmers are effective in using self-insurance

and mitigation measures to protect against idiosyncratic risk and given the small role co-

variate seasonal risk plays in crop variability, farmers may rationally prefer to forgo weather

index insurance at any positive price to focus their risk management choices on minimizing

other sources of risk.

Although there are many potential impediments to insurance uptake, this research pro-

vides evidence for an obvious but until now unsupported explanation: insurance contracts are

overpriced from the perspective of the farming household. Product design and ratemaking of

index insurance in India has generally taken a long view, utilizing rainfall data extending as

far back as four decades to calculate actuarial rates. From the perspective of the insurance

company, such a long time horizon may support the company’s longevity in managing risk.

However, it may not easily align with the planning horizons of rural households. Motivated

by our econometric results, we take a shorter-term perspective and calculate the actuarial

value of payouts using rainfall data from five seasons, including a drought season, and a large

number of geographically dispersed locations. We find that loading factors on these contracts

are excessive and that this pricing problem undermines the incentives for smallholder farm-

ers to purchase insurance. Our combines results suggest that micro-insurance markets could

hold limited promise for improving household risk management, and then only to the extent

that future products can adapt to the realities facing potential purchasers.
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Table 1: Descriptive Statistics by Crop

Rice Sorghum Wheat Maize Cotton Total

yield (kg/ha) 3,356 2,368 1,537 2,596 1,383 2,658
(3,252) (1,429) (4,038) (2,397) (870.4) (2,956)

labor (hr/ha) 880.1 301.6 760.5 831.7 1156.6 749.8
(825.8) (265.9) (2,777) (769.6) (644.4) (1,239)

fertilizer (kg/ha) 215.0 289.3 174.6 252.3 333.9 239.2
(213.6) (191.9) (724.0) (224.6) (210.0) (333.4)

mechanization (Rs/ha) 1,362 2,891 805.6 878.7 2,927 1,716
(2,781) (4,887) (1,289) (1,755) (3,778) (3,369)

pesticide (Rs/ha) 61.7 124.5 57.2 59.8 2,066 235.0
(266.7) (566.3) (345.9) (319.0) (2,748) (1,012)

parcel area (ha) 0.355 0.597 0.674 0.317 0.904 0.494
(0.501) (0.833) (0.733) (0.334) (0.662) (0.652)

rainfall (mm) 539.1 395.0 286.5 456.3 426.3 468.4
(253.3) (166.6) (83.1) (192.2) (178.1) (234.8)

number of observations 5,572 2,720 1,625 1,073 952 11,942
number of parcels 2,678 1,636 1,151 549 600 5,100
number of households 612 491 383 268 254 1,079
number of seasons 106 81 69 86 51 240
number of villages 21 20 20 20 12 30
number of time periods 10 5 10 10 5 10

Note: Table displays means of data by crop with standard deviations in parenthesis. All
monetary values are in real 2010 Indian Rupees (Rs).
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Table 2: Results of Production Function Regressions

OLS MLE Bayes

(1) (2) (3)

rice
log labor 1.635∗∗∗ 1.531∗∗∗ 1.127∗∗∗

(0.043) (0.043) (0.032)
log fertilizer 0.598∗∗∗ 0.512∗∗∗ 0.542∗∗∗

(0.019) (0.019) (0.018)
log mechanization 0.206∗∗∗ 0.176∗∗∗ 0.147∗∗∗

(0.010) (0.009) (0.009)
log pesticides 0.123∗∗∗ 0.093∗∗∗ 0.088∗∗∗

(0.011) (0.010) (0.010)
sorghum

log labor 0.585∗∗∗ 0.559∗∗∗ 0.987∗∗∗

(0.063) (0.060) (0.042)
log fertilizer 0.087∗∗ 0.108∗∗∗ 0.214∗∗∗

(0.042) (0.040) (0.038)
log mechanization 0.321∗∗∗ 0.342∗∗∗ 0.491∗∗∗

(0.030) (0.029) (0.026)
log pesticides 0.009 0.012 0.009

(0.018) (0.016) (0.016)
wheat

log labor 0.993∗∗∗ 0.988∗∗∗ 1.217∗∗∗

(0.054) (0.053) (0.036)
log fertilizer 0.110∗∗∗ 0.108∗∗∗ 0.073∗∗∗

(0.021) (0.020) (0.036)
log mechanization 0.386∗∗∗ 0.350∗∗∗ 0.366∗∗∗

(0.019) (0.018) (0.036)
log pesticides −0.059∗∗ −0.069∗∗∗ −0.100∗∗∗

(0.026) (0.025) (0.025)
maize

log labor 1.126∗∗∗ 1.174∗∗∗ 1.584∗∗∗

(0.100) (0.097) (0.043)
log fertilizer 0.048 0.016 −0.005

(0.041) (0.039) (0.040)
log mechanization 0.111∗∗∗ 0.096∗∗∗ 0.109∗∗∗

(0.018) (0.017) (0.017)
log pesticides 0.086∗∗∗ 0.094∗∗∗ 0.098∗∗∗

(0.033) (0.030) (0.029)
cotton

log labor 1.047∗∗∗ 1.064∗∗∗ 1.291∗∗∗

(0.129) (0.124) (0.057)
log fertilizer 0.220∗∗∗ 0.230∗∗∗ 0.230∗∗∗

(0.057) (0.053) (0.053)
log mechanization 0.072∗∗ 0.033 0.036

(0.031) (0.031) (0.029)
log pesticides 0.128∗∗∗ 0.115∗∗∗ 0.095∗∗∗

(0.029) (0.028) (0.027)

observations 11,942 11,942 11,942
R2 0.964
Log Likelihood -22,268
Akaike Inf. Crit. 44,598
Deviance Inf. Crit. 44,828 42,578

Note: Dependent variable is log of yield. All specifications include statistically
significant crop-specific intercept terms as controls. Column (1) is a classical
OLS regression that includes season fixed effects but does not account for the
multilevel structure of the data. Column (2) is the maximum likelihood estimate
of the multilevel model and contains covariates and data clustered at parcel,
household, season, village, and time. Column (3) is the Bayesian estimation
of the multilevel model. Bayesian calculations use a burn-in period of 5,000
iterations and an additional 5,000 iterations to ensure convergence. Standard
errors are reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).

35



Table 3: Estimated Variance, ICCs, and Variance Shares from Multilevel Regressions

MLE Bayes

Panel A: Variance Parameter Estimates

parcel (σ2
1) 0.933 1.098

household (σ2
2) 0.002 0.004

season (σ2
3) 0.790 0.903

village (σ2
4) 0.623 0.682

time (σ2
5) 0.126 0.261

idiosyncratic (σ2) 1.623 1.613

Panel B: Intraclass Correlation Coefficients

parcel 0.228 0.241
household 0.228 0.242
season 0.421 0.440
village 0.573 0.589
time 0.604 0.646

Panel C: Shares of Variance From Each Level

parcel 23% 24%
household 00% 00%
season 19% 20%
village 15% 15%
time 03% 06%
idiosyncratic 40% 35%

observations 11,942

Note: In Panel A, estimates of the variance parame-
ters on each level’s residuals come from estimation of
models reported in Columns (2) and (3) in Table 2.
Variances σ2

1 , σ2
2 , σ2

3 , σ2
4 , σ2

5 represent the variance in
crop yield that comes from the corresponding level.
The final variance parameter (σ2) corresponds to the
idiosyncratic or unexplained portion of the model. In-
traclass correlation coefficients in Panel B are calcu-
lated using the formulas in equations (7)-(11). Panel
C decomposes the ICC into percent of variance ac-
corded to each level. For comparison, Appendix Ta-
bles A2 and A3 reports alternative specifications of
the models presented here.
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Table 4: Estimated Variance, ICCs, and Variance Shares by Crop

Rice Sorghum Wheat Maize Cotton
MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Variance Parameter Estimates

parcel (σ2
1) 1.858 1.852 0.000 0.002 1.092 1.059 0.564 0.557 0.000 0.018

household (σ2
2) 0.000 0.003 0.048 0.046 0.046 0.034 0.000 0.007 0.013 0.010

season (σ2
3) 0.832 0.865 0.166 0.174 2.323 2.573 0.234 0.266 0.367 0.401

village (σ2
4) 1.098 1.266 0.133 0.156 5.527 6.411 0.185 0.177 0.000 0.041

time (σ2
5) 0.203 0.298 0.000 0.011 0.612 0.694 0.000 0.013 0.521 0.689

idiosyncratic (σ2) 1.918 1.918 0.686 0.684 1.598 1.626 0.517 0.518 0.785 0.766

Panel B: Intraclass Correlation Coefficients

parcel 0.314 0.299 0.000 0.002 0.098 0.085 0.376 0.362 0.000 0.009
household 0.314 0.299 0.046 0.045 0.102 0.088 0.376 0.366 0.008 0.015
season 0.455 0.439 0.207 0.207 0.309 0.296 0.532 0.539 0.225 0.223
village 0.641 0.643 0.336 0.352 0.803 0.813 0.655 0.654 0.225 0.244
time 0.675 0.691 0.336 0.363 0.857 0.869 0.655 0.663 0.534 0.602

Panel C: Shares of Variance From Each Level

parcel 31% 30% 00% 00% 10% 09% 38% 36% 00% 01%
household 00% 00% 05% 04% 00% 00% 00% 00% 01% 01%
season 14% 14% 16% 16% 21% 21% 16% 17% 22% 21%
village 19% 20% 13% 15% 49% 52% 12% 12% 00% 02%
time 03% 05% 00% 01% 05% 06% 00% 01% 31% 36%
idiosyncratic 32% 31% 66% 64% 14% 13% 34% 34% 47% 40%

observations 5,572 2,720 1,625 1,073 952

Note: In Panel A, estimates of the variance parameters on each level’s residuals come from estimation of models in corresponding columns in Appendix
Table A1. Variances σ2

1 , σ2
2 , σ2

3 , σ2
4 , σ2

5 represent the variance in crop yield that comes from the corresponding level. The final variance parameter (σ2)
corresponds to the idiosyncratic or unexplained portion of the model. Intraclass correlation coefficients in Panel B are calculated using the formulas in
equations (7)-(11). Panel C decomposes the ICC into percent of variance accorded to each level. Bayesian calculations use a burn-in period of 5,000
iterations and an additional 5,000 iterations to ensure convergence.
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Table 5: Actuarial Values and Payout Probabilities

Contract Structure Summary Statistics
Actuarially Fair Probability Loading Years until

Strike Exit Max Payout Premium of Payout Factor Payout

Panel A
High-Payout Contract Structure

Phase I 70 10 1000
190.9 14.0% 1.47 2.38Phase II 80 10 1000

Phase III 375 450 1000

Panel B
Medium-Payout Contract Structure

Phase I 78 15 1000
129.2 12.3% 2.32 2.71Phase II 72 12 1000

Phase III 499 580 1000

Panel C
Low-Payout Contract Structure

Phase I 50 5 1000
69.6 8.77% 3.86 3.80Phase II 60 5 1000

Phase III 560 670 1000

Note: High- and low-payout contracts come from Cole et al. (2013) while the medium-payout contract comes from
Giné et al. (2007). While each contract from Cole et al. (2013) is designed for a specific village/weather station,
we follow Giné et al. (2007) in utilizing a large representative set of rainfall data to calculate actuarially fair premia
and the probability of payout. Actuarially fair premia are calculated using standard actuarial principles. Payout
probability is the average occurrence of a payout. Loading factors are calculated as 1 + λ = paid price

actuarially fair price . Years
until payout are calculated by dividing the inverse of the probability of payout by three, which assumes payout events
occur as a Poisson process. For comparison, Appendix Table A4 reports the same calculations for the remaining three
contracts reported in Cole et al. (2013).
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Figure 1: Zeta Profile Plots for Multilevel Model
Note: The figure presents the zeta profile plots, representing the underlying distribution of the parameters resulting from the model fit to
equations (5a)-(5f). Plots are calculated by first estimating the model. Then, holding a single parameter fixed, the other parameters are varied
to assess the fit of each new iteration compared to the globally optimal fit. The comparison statistic is the likelihood ratio test. Finally, a
signed square root transformation is applied to the LR statistic. The plots are the absolute value of the resulting function, |ζ|, in comparison
to the estimated parameter values. Parameters with underlying normal distributions have straight line zeta profile plots. The vertical lines
delimit 50%, 80%, 90%, 95%, and 99% confidence intervals. For zeta profile plot lines that are not straight, the normal distribution is a poor
approximation of the underlying distribution.
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Figure 2: Histograms of Level Variance from Bayesian Estimation

Note: Histograms are drawn from posterior distributions of variance terms estimated from Column (3) reported in Table 2.
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Figure 3: Structure of Insurance Contract
Note: Figure shows the representative contract structure used in calculating payouts presented in Table 5.
Specifically the figure represents the Phase I contract for the high-payout case. The Phase II contract
structure is identical to the Phase I contract with the exception of strike and exit values. The Phase III
contract does not differ in structure but has strike and exit values set to insure against excess rainfall,
meaning the contract slope is positive. Additionally, the contract is representative of contracts on offer by
ICICI Lombard throughout the region of Andhra Pradesh. The contract in each phase has an upper and
lower rainfall threshold. The policy pays zero above the strike; otherwise the policy pays a fixed amount
for each millimeter of shortfall (excess in the case of Phase III), until the exit is reached. In the contract
represented this is 10 Rs. per mm. At the exit point the contract is discontinuous and “jumps” to its
maximum value. Note that this specific contract comes from Giné et al. (2007) and is a slight variation on
the contracts presented in Giné et al. (2008, 2012) and Cole et al. (2013). The contracts presented in these
papers share the same structure but vary in the strike and exit values.
Source: Giné et al. (2007).
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A For Online Publication: Results from Estimation of

Crop-Specific Production Functions

In the interests of space we limit the results from the crop-specific regressions presented in
the paper and simply present the variance parameter estimates. Here we present the full
results from the crop-specific regressions.

For reference, Table 2 presents the results from the varying-slope model using OLS,
MLE, and Bayesian estimation techniques. Table A1 presents the MLE and Bayesian point
estimates from the production function estimates for each crop.

While point estimates change slightly from the full regression to the crop-by-crop regres-
sions, qualitatively there is no change. For rice, all point estimates in both specifications are
positive and significant. For sorghum, all point estimates, save for pesticide, in both spec-
ifications are positive and significant. For wheat, all point estimates in both specifications
are positive and significant, save for pesticide, which is negative and significant. For maize,
all point estimates are positive and significant, save for fertilizer, which is not significant in
both specifications. For cotton, all point estimates in both specifications are positive and
significant, save for mechanization, which is not significant.

The consistency in point estimates across estimation techniques (OLS, MLE, Bayes) and
across divisions of the data demonstrate a remarkably robust set of results.

B For Online Publication: Alternative Specifications

of the Multilevel Model

In order to verify the robustness of our primary results this appendix presents a variety of
alternative specifications of our model. The goal is to determine if grouping the data in
different ways might have an effect on our inferences.

First, in Table A2, we test a variety of “null” models in which covariates are excluded.
In each model we add complexity by including a new level effect. This allows us to see how
our estimate of seasonal variability changes as we account for additional level effects. We
start in columns (1) and (2) with simply the season, village, and time levels and build up
from there. Adding a household level in columns (3) and (4) simply reduces the unassigned
variance in the idiosyncratic term and has no effect on the other sources of variance. Adding
a parcel level in columns (5) and (6) has a small effect on season-level variance but primarily
reduces the amount of variance ascribed to the idiosyncratic error term. In columns (7) and
(8) we add in parcel-level measured inputs, which is our preferred specification presented in
the paper. Compared to the “null” models, the inclusion of inputs has the effect of reduce
the variance ascribed to parcel-level effects and the idiosyncratic error term. It also has the
effect of increasing the variance due to weather and variance at the village-level.

Second, we test models which exclude season, village, and temporal levels. Each regres-
sion includes the full contingent of measured inputs which we refrain from reporting since
our focus is on alternative specifications for the variance structure. The intuition for focusing

42



on the effect of village and time levels in the multilevel model is that our proxy for weather
is an interaction effect between village and time. Because of this, the village and/or time
levels may be picking up some of the “true” effects of weather.

Table A3 presents results from six specifications estimated using MLE.22 Column (1)
reports results from including just a time-level as a proxy for weather. Variation in time
alone would be a valid proxy for weather if all locations in the study experienced the same
weather. Given the large geographic dispersion it is unsurprising that a weather proxy
that disregards local variation in weather accounts for a vary small share of total variance.
Column (2) replaces the time-level with a village-level. Variation across villages alone would
be a valid proxy for weather if each time period experienced the same weather. Given that
there are two distinct seasons in India - wet Kharif and dry Rabi - and that we examine
only five years, this is not unreasonable. We see this in the relatively large share of variance
due to the village-level. However, there may be other spatial elements that our village term
picks up, such as agronomic suitability or government policy.

Column (3)-(6) include a season-level which is the interaction between village indicators
and time indicators. This is our preferred proxy for weather as it allows weather to vary
across both villages and time. In column (3) we drop the village and time levels in favor of
only the season-level. The result is a relatively large share of variance ascribed to differences
across location-time. This might be the “true” measure of the effect of weather variability
on yield variability. Or, there might be location specific effects and time specific effects that
are being captured in this term. To check this, in column (4) we add back in the time-
level effect. Having controlled for seasonality, the time effect will only pick up variation in
yields across time separate from variation in location-time. Such variation would be from
technological change that effects all villages at the same time or, potentially, a nationwide
weather event. Given that our data covers only five years the time-only effect is small. In
column (5) we add back in the village-level effect instead of the time effect. Having controlled
for seasonality, the village effect will only pick up variation in yields across village separate
from variation in location-time. Such variation would be from differences in time-invariant
agronomic characteristics of the villages or differences in state policies that have different
impacts of villages. Given that we have 30 villages across eight Indian states the location-
only effect is moderate, relative to other sources of variation. Column (6) is our preferred
specification since it controls for time-only, location-only, and location-time events.

Compared to the alternate specifications presented in Table A3, the specification pre-
sented in Column (6) and the paper is a better fit for the data as measured by the log
likelihood, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), and
the size of the idiosyncratic residual. The better fit and the ability to control for all potential
sources of variance makes this our preferred specification.

22The Bayesian estimates tell the same story as the maximum likelihood estimates and so are omitted.
Bayesian estimates are available from the authors upon request.
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C For Online Publication: Details on the Computation

of Actuarially Fair Premia and Payout Probabilities

This appendix provides details on the sources of data for and the computation of actuarially
fair premia and payout probabilities. It also contains several robustness checks in which we
calculate premia and payout probabilities using data on actual index insurance contracts
provided by Giné et al. (2007, 2012) and Cole et al. (2013).

C.1 Source of the Data

Though we have access to daily rainfall data for all 30 villages in the VDSA data set, we limit
our calculation of premia and payouts to a subset of 16 villages within the Indian states of
Bihar, Jharkhand, Odisha, Andhra Pradesh, and Karnataka. This is done for several reasons.

First, the 16 villages are clustered in nine districts, all of which fall within the semi-
arid, tropical wet-and-dry, and humid subtropical climate zones. These zones all share
quantitatively similar rainfall patterns and variability during the monsoon season (Giné
et al., 2009). Despite the shared climate zones, our village rainfall data exhibit a level of
variability, due to the wide spatial range, which is of the same order of magnitude as the
variability one expects for monsoon rainfall in a single location in the same general region
of Central and Eastern India. The actual rainfall values are also representative of what
is observed for individual, non-VDSA, locations in the region. In this fashion, our spatial
rainfall variability acts as a proxy for temporal variability at the district level. We can
therefore view our data as a quasi-panel with multiple observations over space instead of the
traditional panel structure of multiple observations over time.

Second, the restriction of analysis to villages from these five states is consistent with
the premium data from commercial insurers ICICI-Lombard and IFFCO-Tokio that are
most frequently utilized in the academic literature.23 Contracts reported therein are largely
for various village-weather station pairs in Andhra Pradesh with similar monsoon rainfall
characteristics to the villages in the five states we consider from the VDSA.24

Third, inclusion of villages in the Indian states of Madhya Pradesh and Gujarat turn
out to be outliers in the humid direction in Phases I and II. By excluding these outliers,
and focusing on the subset of 16 villages, we preserve the aforementioned proxy property.
This allows us to avoid the use of villages where rainfall-indexed payouts would never occur.
While this obviously biases our results, given that we exclude villages that never see a payout,
the bias is downwards, making the results presented in the paper conservative in terms of
actuarially fair premia and probability of payout for the corresponding contracts. Had we
included these outliers, our conclusions about the excessively high commercial loading factors
would be even more extreme.

23See the various contracts reported in Clarke et al. (2012), Clarke et al. (2012), Cole et al. (2013), Giné
et al. (2007), Giné et al. (2008), and Giné et al. (2012).

24Cole et al. (2013) reports contracts from the largest set of village-weather station pairs: Anantapur,
Atmakur, Hindupur, Narayanpet, and Mahbubnagar. The three VDSA villages in Andhra Pradesh come
from the districts Prakasam and Mahbubnagar.
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C.2 Computation of Actuarially Fair Premia and Payoff Proba-
bilities

The rain-indexed contracts compute payouts uniformly for all contracts in a given village
by using the rainfall values reported from that village’s rain gauge. We compute the total
rainfall in millimeters for each of the three phases of the monsoon season for that village and
insert these phase totals into the contract payout function.25 We work with payout functions
which are characterized by a strike, an exit, and a max payout.26 While there is a variety of
contracts on offer these contracts differ not in structure but only in their strike, exit, payout
slope, and maximum payout. We calculate actuarially fair premia and payoff probabilities for
all five contracts from Andhra Pradesh in Cole et al. (2013) plus the single contract in Giné
et al. (2007). While Clarke et al. (2012) and Giné et al. (2008) present similarly structured
contracts, the third phase in these contracts insure against deficit rainfall and therefore are
not appropriate for villages in the climate regions where our rainfall data comes from.

We compute actuarially fair premia using standard actuarial principles based on the
empirical data. Namely, we evaluate the payout function for each contract at each rainfall
phase total and then average these empirical payouts over the 57 data points for each phase
of each contract. The total empirical actuarially fair value for each contract is simply the
sum of the three corresponding values for each phase of the contract. We compute the payout
probability for each contract by averaging the values 1 or 0 corresponding to the occurrence of
a payout or not for each of the 171 village-year-phase combinations. This way of accounting
keeps track of multiple payouts in each contract year, which is more conservative (providing
a higher empirical probability) than if one only looked for whether there was one or more
payouts in a given contract year.

C.3 Actuarially Fair Premia and Payoff Probabilities Under Al-
ternative Contracts

As explained in Section 5, we presented in the paper only the two most favorable contracts
from Cole et al. (2013) plus the contract from Giné et al. (2007). In this appendix we
present our calculations from the three less favorable contracts. As can be seen in Table A4,
the payout probabilities for these contracts are 8.8, 4.1, and 2.9 percent, making them very
unlikely to be taken up by farmers. Additionally, the premia determined by ICICI Lombard
are so high in comparison to the actuarially fair prices we have computed empirically, that
the corresponding loading factors all exceed three, a sign that these contracts are severely
overpriced. Besides our desire to take a conservative approach, another sign that the analysis
of these three contracts is not appropriate for use as part of our main argument is that their
commercial pricing, while uniformly excessive, is not internally consistent. Indeed, these
three contracts come from three weather stations (near the towns of Hindupur, Narayanpet,
and Mahbubnagar) which are all in the same climate zone, are all geographically near each

25See the definition of the start and stop of each phase in the text.
26Again, see the definitions of these terms and of the function in the text.
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other, and all share the same maximum payout and payout slope. Therefore, since they only
differ by strike and exit values, actuarial principles dictate that the most favorable strikes
and exits should have the highest premium. That would imply that the premium for the
Hindupur contract should be lower than for the other two contracts. In reality, as seen
in Cole et al. (2013), it is higher. When we consider these contracts, in combination with
our preceding analysis, we find it unsurprising that Cole et al. (2013) found little uptake
of weather index insurance contracts in their randomized control trial, except when farmers
were offered a cash discount. Our findings provide a simple explanation for the experimental
results: the contracts hold little value for rural households.
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Table A1: Classical and Bayesian Estimation of Production Functions by Crop Type

Rice Sorghum Wheat Maize Cotton
MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log labor 1.549∗∗∗ 1.552∗∗∗ 0.472∗∗∗ 0.473∗∗∗ 1.411∗∗∗ 1.411∗∗∗ 0.869∗∗∗ 0.871∗∗∗ 1.196∗∗∗ 1.201∗∗∗

(0.054) (0.054) (0.039) (0.041) (0.071) (0.070) (0.073) (0.077) (0.080) (0.081)
log fertilizer 0.594∗∗∗ 0.594∗∗∗ 0.123∗∗∗ 0.123∗∗∗ 0.120∗∗∗ 0.120∗∗∗ −0.025 −0.026 0.249∗∗∗ 0.248∗∗∗

(0.026) (0.027) (0.025) (0.026) (0.027) (0.028) (0.030) (0.032) (0.037) (0.039)
log mechanization 0.196∗∗∗ 0.197∗∗∗ 0.232∗∗∗ 0.232∗∗∗ 0.449∗∗∗ 0.450∗∗∗ 0.042∗∗∗ 0.041∗∗∗ −0.001 −0.003

(0.013) (0.013) (0.019) (0.020) (0.024) (0.024) (0.014) (0.015) (0.023) (0.023)
log pesticides 0.114∗∗∗ 0.114∗∗∗ 0.012 0.011 −0.161∗∗∗ −0.162∗∗∗ 0.045∗ 0.045∗∗∗ 0.140∗∗∗ 0.138∗∗∗

(0.014) (0.014) (0.011) (0.011) (0.035) (0.035) (0.025) (0.024) (0.020) (0.020)

observations 5,572 2,720 1,625 1,073 952
num. seasons 10 5 11 10 5
Log Likelihood -11,264 -3,507 -3,183 -1,521 -1,308
Akaike Inf. Crit. 22,551 7,036 6,388 3,064 2,639
Deviance Inf. Crit. 22,482 21,185 6,961 6,872 6,328 5,979 2,996 2,721 2,574 2,532

Note: Dependent variable is log of yield. All specifications include a statistically significant intercept term. Columns (1) and (2) are estimates of the production function for rice. Columns (3) and (4) are estimates
of the production function for sorghum. Columns (5) and (6) are estimates of the production function for wheat. Columns (7) and (8) are estimates of the production function for maize. Columns (9) and (10) are
estimates of the production function for cotton. Odd numbered columns are maximum likelihood estimates while even numbered columns are Bayesian estimates. Bayesian calculations use a burn-in period of 5,000
iterations and an additional 5,000 iterations to ensure convergence. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table A2: Estimated Variance, ICCs, and Variance Shares from Null Multilevel Regression Models

MLE Bayes MLE Bayes MLE Bayes MLE Bayes
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Variance Parameter Estimates

parcel (σ2
1) 2.226 2.301 0.933 1.098

household (σ2
2) 0.030 0.020 0.000 0.002 0.002 0.004

season (σ2
3) 0.557 0.567 0.557 0.564 0.479 0.487 0.790 0.903

village (σ2
4) 0.166 0.339 0.165 0.335 0.258 0.402 0.623 0.682

time (σ2
5) 0.026 0.100 0.026 0.112 0.035 0.095 0.126 0.261

idiosyncratic (σ2) 3.853 3.920 3.826 3.901 2.068 2.082 1.623 1.613

Panel B: Intraclass Correlation Coefficients

parcel 0.439 0.429 0.228 0.241
household 0.007 0.004 0.439 0.429 0.228 0.242
season 0.121 0.115 0.127 0.118 0.534 0.520 0.421 0.440
village 0.157 0.184 0.163 0.186 0.585 0.594 0.573 0.589
time 0.163 0.204 0.169 0.209 0.592 0.612 0.604 0.646

Panel C: Shares of Variance From Each Level

parcel 44% 43% 23% 24%
household 01% 00% 00% 00% 00% 00%
season 12% 12% 12% 12% 09% 09% 19% 20%
village 04% 07% 04% 07% 05% 07% 15% 15%
time 01% 02% 01% 02% 01% 02% 03% 06%
idiosyncratic 84% 80% 83% 79% 41% 39% 40% 35%

Observations 11,942 11,942 11,942 11,942 11,942 11,942 11,942 11,942
Log Likelihood -25,231 -25,226 -24,422 -22,268
Akaike Inf. Crit. 50,480 50,473 48,867 44,598
Deviance Inf. Crit. 50,435 50,384 50,426 50,378 48,818 46,115 44,828 42,578

Note: Estimates of the variance parameters in Panel A, Columns (1)-(6), come from estimations of regressions without covariates
(so-called “null” models) that have been estimated at various levels. Estimates of the variance parameters in Panel A, Columns
(7) and (8) come from estimation of models reported in Table 2. Columns (1) and (2) contain no covariates and data clustered
only at the season-,village-, and time-level. Column (3) and (4) contain no covariates and add a cluster at the household-level.
Column (5) and (6) contain no covariates and add a cluster at the parcel-level. Column (7) and (8) contain covariates and data
clustered at all levels. Odd numbered columns are maximum likelihood estimates while even numbered columns are Bayesian
estimates. Bayesian calculations use a burn-in period of 5,000 iterations and an additional 5,000 iterations to ensure convergence.
Variances σ2

1 , σ2
2 , σ2

3 , σ2
4 , σ2

5 represent the variance in crop yield that comes from the corresponding level. The final variance
parameter (σ2) corresponds to the idiosyncratic or unexplained portion of the model. Intraclass correlation coefficients in Panel
B are calculated using the formulas in equations (7)-(11). Panel C decomposes the ICC into percent of variance accorded to each
level.
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Table A3: Estimated Variance, ICCs, Variance Shares from Alternative Specifications

(1) (2) (3) (4) (5) (6)

Panel A: Variance Parameter Estimates

parcel 1.378 1.171 1.000 1.000 0.992 0.933
household 0.179 0.000 0.002 0.002 0.002 0.002
season 1.343 1.290 0.912 0.790
village 0.726 0.548 0.623
time 0.146 0.031 0.126
idiosyncratic 1.957 2.059 1.623 1.623 1.626 1.623

Panel B: Intraclass Correlation Coefficients

parcel 0.377 0.296 0.252 0.251 0.243 0.228
household 0.425 0.296 0.252 0.252 0.244 0.228
season 0.591 0.577 0.467 0.421
village 0.479 0.601 0.573
time 0.465 0.592 0.604

Panel C: Shares of Variance From Each Level

parcel 38% 30% 25% 25% 24% 23%
household 05% 00% 00% 00% 00% 00%
season 34% 32% 22% 19%
village 18% 13% 15%
time 04% 02% 03%
idiosyncratic 53% 52% 41% 41% 40% 40%

observations 11,942 11,942 11,942 11,942 11,942 11,942
log likelihood -23,423 -23,323 -22,296 -22,294 -22,274 -22,268
Akaike Inf. Crit. 46,904 46,704 44,650 44,649 44,608 44,598
Deviance Inf. Crit. 46,599 46,400 44,351 44,350 44,310 44,828

Note: Estimates of the variance parameters in Panel A come from alternative specifications of the
models presented in Table 2. All models contain crop-specific covariates and crop-specific intercepts.
All six specifications are estimated using MLE. Column (1) reports results using only a time-level
to proxy for weather while Column (2) uses only a village-level to proxy for weather. Column (3)
drops the village and time levels in favor of the season-level. Column (4) adds back in the time-level
while Column (5) adds back in the village-level. Column (6) includes season, village, and time levels.
Intraclass correlation coefficients in Panel B are calculated using the formulas in equations (7)-(11).
Panel C decomposes the ICC into percent of variance accorded to each level.
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Table A4: Actuarial Values and Payout Probabilities for Alternative Contracts

Contract Structure Summary Statistics
Actuarially Fair Probability Loading Years until

Strike Exit Max Payout Premium of Payout Factor Payout

Panel A
High-Payout Contract Structure

Phase I 45 5 1000
63.67 8.77% 4.55 3.80Phase II 55 5 1000

Phase III 500 570 1000

Panel B
Medium-Payout Contract Structure

Phase I 25 0 1000
81.71 4.14% 3.73 8.06Phase II 15 0 1000

Phase III 500 580 1000

Panel C
Low-Payout Contract Structure

Phase I 30 5 1000
42.02 2.92% 8.33 11.40Phase II 30 5 1000

Phase III 500 575 1000

Note: All contracts come from Cole et al. (2013). While each contract is designed for a specific village/weather
station, we follow Giné et al. (2007) in utilizing a large representative set of rainfall data to calculate actuarially
fair premia and the probability of payout. Actuarially fair premia are calculated using standard actuarial principles.
Payout probability is the average occurrence of a payout. Loading factors are calculated as 1 +λ = paid price

actuarially fair price .
Years until payout are calculated by dividing the inverse of the probability of payout by three, which assumes payout
events occur as a Poisson process.
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