The Structure and Design of Randomized Control Trials (RCTs)

Outline for the Session

- 1. What are field experiments?
- 2. Why randomize?
- 3. How do I incorporate randomized evaluations into my research design?
- 4. What are the practical design and implementation issues?

What are Field Experiments?

(Recent) History

- Two worlds
 - Lab experiment research world
 - Trades off control for context
 - Observational research world
 - Frustrated with identification challenge

Broad Categorization

- Randomized evaluations
 - Aka randomized control trials (RCTs)
 - Key variation: What do participants know about the study?
 - Fully unaware?
 - Unaware of randomization, aware of measurement (most development studies)?
 - Fully (or mostly) aware of randomization and measurement?

Broad Categorization

- Lab experiments in the field
 - Aka framed field experiments or survey experiments
 - (sometimes) Aka incentive compatible surveys
 - Key variation:
 - Outcome measure for larger study?
 - Full study itself?

(Recent) History: Development

Why Randomize?

The Problem of Causal Inference

- The potential outcome (Rubin, 1974)
- Average effect

$$E[\delta] = E[Y_i^T - Y_i^C]$$

The Problem of Causal Inference

- The potential outcome (Rubin, 1974)
- Treatment effect

$$E[\delta] = E[Y_i^T | \mathbf{T}] - E[Y_i^C | \mathbf{C}]$$

The Problem of Causal Inference

• The potential outcome (Rubin, 1974)

$$E[\delta] = E[Y_i^T | \mathbf{T}] - E[Y_i^C | \mathbf{C}] -E[Y_i^C | \mathbf{T}] + E[Y_i^C | \mathbf{T}]$$

The Problem of Causal Inference

• The potential outcome (Rubin, 1974)

$$E[\delta] = E[Y_i^T | \mathbf{T}] - E[Y_i^C | \mathbf{C}] -E[Y_i^C | \mathbf{T}] + E[Y_i^C | \mathbf{T}]$$

$$= E[Y_i^T - Y_i^C | \mathbf{T}] + E[Y_i^C | \mathbf{T}] - E[Y_i^C | \mathbf{C}]$$

The Problem of Causal Inference

• The potential outcome (Rubin, 1974)

$$E[\delta] = E[Y_i^T | \mathbf{T}] - E[Y_i^C | \mathbf{C}] -E[Y_i^C | \mathbf{T}] + E[Y_i^C | \mathbf{T}]$$

Randomization Solves the Selection Bias

- First randomly select sample *N* from population *P*
- Second, randomly assign N into
 - Treatment (N_T) and Control (N_C)
- Since treatment is randomly assigned selection bias is removed

 $- E[Y_i^C|T] - E[Y_i^C|C] = 0$

- Then we can simply run the regression
 - $-Y_i = \alpha + \beta T_i + \epsilon_i$
 - However, the SE are not generally correct if group variances differ

Caveats

- This requires two assumptions
 - SUTVA (Stable Unit Treatment Value Assumption)
 - "no spillovers"
 - Unconfoundedness/Ignorability
 - "assignment to treatment is independent of outcome"
- In most cases only partial randomization occurs
 - Population of study is not nationally representative but chosen conditional on some observables (poverty, age, gender, etc.)

Incorporating Randomized Evaluations in a Research Design

Preparing to Run a Field Experiment

- 1. Use economic theory to guide your design
- 2. Understand the local context
- 3. Obtain sufficient sample size

INIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 1. Use Economic Theory to Guide Your Design

- Theory allows appropriate nulls to be tested, designs to be efficient, and the 'whys' to be answered
- Theory is portable, many empirical results are not

An Example

- Go beyond A/B experiments to test economic theory
- List, 2004
 - Why do people receive different price quotes for the same good?
 - Economists have two major theories
 - Discrimination
 - Search Costs

Discrimination NFE

- 12 disabled and 12 non-disabled testers approached various body shops in Chicago with different cars (identical cars across disabled and abled) that were in need of repair
- Offer differences:
 - Disabled receive prices 30% higher than the nondisabled receive

Complementary Evidence

- So what?
 - We find that price differences exist
 - But why? Is it search costs or discrimination?
- New Treatment
 - Re-send different pairs to receive price quotes
 - One treatment replicates above treatment
 - Another treatment is identical except that it has both agent types explicitly noting that "I'm getting a few price quotes today

Replication Treatment

"Few Quote" Treatment

2. Understand the Local Context

- Be an expert about the market that you are studying
 - What incentivizes people in your study/context may not be the same as what incentivizes others
- Interpreting results from an intervention is quite difficult if you don't understand subjects' underlying motivations

Potential Hurdles: Political

- Political difficulties
 - Politicians like to reward supporters. They have ideas about where they would like a project to go and may be reluctant to randomize
 - Individuals in the control group may be angry that they are not in the treatment group
 - NGOs and private companies may have areas they want to target and want to choose the treated group

Potential Hurdles: Ethical

- Ethical issues
 - Analogous to clinical trails--withholding the treatment from the control group
 - When treatment demonstrated effective, make it available to the control group (worms)
 - Institutional Review Boards
 - Do your institutions have IRBs?
 - Partnering with universities, which have stringent review for all human subjects research

3. Obtain Sufficient Sample Size

- You should have a sample size that allows you to make inference.
- Using simple power tests allow you to know what is "sufficient size" before you run your experiment.
- Fewer researchers realize that even when you reject nulls power matters.

Basic Principles of Power Calculations

- Given our regression framework
 - $-Y_i = \alpha + \beta T_i + \epsilon_i$
 - The treatment effect is $\widehat{\beta}$
- The variance of $\hat{\beta}$ is

$$-\frac{1}{N_T(1-N_T)}\frac{\sigma^2}{N}$$

• We want to test the hypothesis

 $- H_0: \hat{\beta} = 0$

• The significance level, or size, of a test represents the probability of a Type I error

Error Types

- Type I
 - We reject the hypothesis when it is in fact true
 - False positive
- Type II
 - We fail to reject the hypothesis when it is in fact false
 - False negative

Power

- The usual approach stems from the standard regression model: under a true null what is the probability of observing the coefficient that we observed?
- Power calculations are quite different, exploring if the alternative hypothesis is true, then what is the probability that the estimated coefficient lies outside the 95% CI defined under the null.

Hypothesis Testing

• For a given significance level H_0 will be rejected if $\hat{\beta}$ falls to the right of a critical level t_a

Hypothesis Testing

- For a given significance level H_0 will be rejected if $\hat{\beta}$ falls to the right of a critical level t_a
- The power of the test is the area to the right of t_a

• Assuming equal variances $\sigma_T^2 = \sigma_C^2$:

$$n_T^* = n_C^* = n^* = 2(t_{\alpha/2} + t_{\beta})^2 \left(\frac{\sigma}{\delta}\right)^2$$

- Note that the necessary sample size
 - Increases rapidly with the desired significance level and power.
 - Increases proportionally with the variance of the outcomes.
 - Decreases inversely proportionally with the square of the minimum detectable effect size.

• Assuming equal variances $\sigma_T^2 = \sigma_C^2$:

$$n_T^* = n_C^* = n^* = 2(t_{\alpha/2} + t_{\beta})^2 \left(\frac{\sigma}{\delta}\right)^2$$

• Sample size depends on the ratio of effect size to standard deviation. Hence, effect sizes can just as easily be expressed in standard deviations.

• Assuming equal variances $\sigma_T^2 = \sigma_C^2$:

$$n_T^* = n_C^* = n^* = 2(t_{\alpha/2} + t_{\beta})^2 \left(\frac{\sigma}{\delta}\right)^2$$

- Standard is to use α =0.05 and have power of 0.80 (β =0.20).
- So to detect a one-standard deviation change using the standard approach, we would need:
 n^{*} = 2(1.96 + 0.84)² * (1)² ≈ 16
 observations in each cell

• Assuming equal variances $\sigma_T^2 = \sigma_C^2$:

$$n_T^* = n_C^* = n^* = 2(t_{\alpha/2} + t_{\beta})^2 \left(\frac{\sigma}{\delta}\right)^2$$

- Standard is to use α =0.05 and have power of 0.80 (β =0.20).
- So to detect a half-standard deviation change using the standard approach, we would need:
 n^{*} = 2(1.96 + 0.84)² * (2)² ≈ 64
 observations in each cell

Sample Size "Rules of Thumb"

• Assuming equal variances $\sigma_T^2 = \sigma_C^2$:

$$n_T^* = n_C^* = n^* = 2(t_{\alpha/2} + t_{\beta})^2 \left(\frac{\sigma}{\delta}\right)^2$$

- Standard is to use α =0.05 and have power of 0.80 (β =0.20).
- So to detect a quarter-standard deviation change using the standard approach, we would need:
 n^{*} = 2(1.96 + 0.84)² * (4)² ≈ 250
 observations in each cell

Things that Effect the Power

- Grouped errors
 - Comparing between multiple groups reduces MDE
- Imperfect compliance
 - Partial compliance reduces the MDE
- Control variables
 - Controlling for baseline values increases the MDE
- Stratification
 - Blocking into similar groups increases the MDE

Power Calculations in Practice

- Many of the parameters in the power calculations are unknown
 - Need to know mean and variance in absence of experiment (get from previous lit)
 - Correlation of outcome of interest between groups (do calculations at a variety of levels).
 - The expected effect size
- Budgets are usually the binding constraint
 - Use the power calculations to help optimally design the experiment within the given budget constraint

Optimal Design

- A free, simple tool for calculating sample size
- Can do calculations and generate graphs for a number of different study designs
 - Randomized at individual level
 - Randomized at group level (clustering)
 - With outcomes measured at individual level
 - Or outcomes measured at the group level
 - Stratified or blocked designs
 - Both continuous and binary outcomes

Practical Design and Implementation Issues

Karlan, Dean. 2016. *American Economic Association* Annual Meeting

Unit of Randomization

- 1. Randomizing at the individual level
- 2. Randomizing at the group level "Cluster Randomized Trial"
- Which level to randomize?
 - What unit does the program target for treatment?
 - What is the unit of analysis?

How to Choose the Level

- Nature of the Treatment
 - How is the intervention administered?
 - What is the unit of intervention?
 - How wide is the potential impact?
 - Spillovers and GE effects
- Power requirements: larger the groups the larger the larger the total sample size
- Generally, best to randomize at the level at which the treatment is administered.

How to Choose the Level

Suppose an intervention targets health outcomes of children through info on hand-washing. What is the appropriate level of randomization?

- A. Child level
- B. Household level
- C. Classroom level
- D. School level
- E. Village level
- F. Don't know

Possible Designs

- Simple lottery
- Randomization in the "bubble"
- Randomized phase-in
- Rotation
- Encouragement design

Note: These are not mutually exclusive.

Simple Lottery

- Ideally start with a sample frame
 - Pull out of a hat/bucket
 - Use a random number generator in a spreadsheet program to order observations randomly
- With replacement?
- Proportional entry?

Randomization in "The Bubble"

- Sometimes a partner may not be willing to randomize among eligible people.
- Partner might be willing to randomize in "the bubble."
- People "in the bubble" are people who are borderline in terms of eligibility
 - Just above the threshold \rightarrow not eligible, but almost
- What treatment effect do we measure? What does it mean for external validity?

Randomized Phase-In

- Everyone gets program eventually
 - What determines which schools, branches, etc. will be covered in which year?
- Advantages
 - Everyone gets something eventually
 - Provides incentives to maintain contact
- Concerns
 - Can complicate estimating long-run effects
 - Care required with phase-in windows
 - Do expectations change actions today?

Rotation Design

- Groups get treatment in turns
- Advantages
 - Perceived as fairer; easier to get accepted
- Concerns
 - If people in Group B anticipate they'll receive the treatment the next period, they can have a different behavior in the first period
 - Impossible to measure long-term impact since no control group after first period

"Want to Survey Me? Then Treat Me"

- Phase-in may not provide enough benefit to late round participants
- Cooperation from control group may be critical

- Consider within-group randomization
- All participants get some benefit
- Concern: increased likelihood of contamination

Encouragement Design

- Sometimes it's practically or ethically impossible to randomize program access
- But most programs have less than 100% take-up
- Randomize encouragement to receive treatment

What Is "Encouragement"?

- Something that makes some folks more likely to use program than others
- Not itself a "treatment"
- For whom are we estimating the treatment effect?
- Crucial:
 - Think about who responds to encouragement
 - Are they different from the whole population?

Stratification or Blocking

- Objective: balancing your sample when you have a small sample
- What is it:
 - Dividing the sample into different subgroups
 - Assigning treatment and control with precise proportions, within each subgroup

When to Stratify

- Stratify on variables that could have important impact on outcome variable
- Stratify on subgroups that you are particularly interested in (where may think impact of program may be different)
- Stratification more important with small sample frame
- Can get complex to stratify on too many variables
- Makes the draw less transparent the more you stratify

Varying Levels of Treatment

- Some schools are assigned full treatment
 - All kids get pills
- Some schools are assigned partial treatment
 50% are designated to get pills
- Testing subsidies and prices

Relative Size of Treatments

- All depends on relative weight of importance to the researcher
- 2 (similar) treatments and 1 control:
 - If you want to maximize the any treatment vs control test: 25/25/50.
 - If you want to maximize all pairwise tests equally: 33/33/33.
 - If you want to maximize the T1 vs T2 test: maybe 40/40/20.

Data Collection – The Baseline Survey

- In theory pure randomization renders baseline surveys unnecessary
- So, why is it still important to conduct them?
 - Generates control variables that reduce variance in outcome
 - Makes it possible to examine interactions between initial conditions and the impact of the program
 - Provides an opportunity to check if randomization was successful
 - Offers opportunity to test and refine data collection procedures

A Practical Example

- Your agency is implementing an irrigation program in several villages in a developing country
- They've asked you to design an RCT to measure the impact of the project.
 - How would you design the RCT?
 - What would you measure?
 - What will you randomize over?
 - How many people will you include?
 - What things could go wrong?

