Measuring Treatment Effects

Outline for the Session

- 1. Types of treatment effects
- 2. Calculating the Average Treatment Effect
- 3. Calculating the Average Treatment Effect on the Treated and Untreated
- 4. Calculating the Local Average Treatment Effect
- 5. Calculating the Marginal Treatment Effect
- 6. Issues in establishing the validity of your treatment effect

Types of Treatment Effects

Which Treatment Effect to Measure?

- There are a number of different ways to measure the effect of treatment
 - ATE: Average Treatment Effect
 - ATT: Average Treatment Effect on the Treated
 - ATUT: Average Treatment Effect on the Untreated
 - ITT: Intent to Treat Estimate
 - LATE: Local Average Treatment Effect
 - MTE: Marginal Treatment Effect

Which Treatment Effect to Measure?

- Different treatment effects are an average over parts of the distribution of impacts
 - The ATE averages over the entire distribution
 - The ATT averages over the distribution of impacts for those allocated to the treatment
 - The LATE averages over the distribution of impacts for those who switch into the treatment as the result of a change in an some instrument

Which Treatment Effect to Measure?

- These all represent an aggregation over different margins
 - As such, they are not comparable to each other
- As a unifying measurement Heckman and Vytlacil (2005) defined the MTE
 - The MTE is the effect of the treatment on the marginal individual entering treatment

Basic Requirements

- What is needed to measuring the treatment effect?
 - Assumptions
 - SUTVA
 - Ignorability/Unconfoundedness
 - Data
 - Observations on outcomes for those who were treated
 - Observations on outcomes for some constructed control group
- Without observations from treated individuals and from some sort of control group we cannot measure the effect of the treatment!

What We Can Never Measure

- Notice that all our measurements of treatment effects are averages
 - The Fundamental Problem of Causal Inference
 - We do not observe subject in simultaneous treated and untreated states
- So, we can never determine the effect of the treatment on an individual
 - We can only ever determine the average effect of the treatment or the effect of the treatment on an average individual

Calculating the Average Treatment Effect (ATE)

Average Treatment Effect

 $ATE = E[Y_i^T - Y_i^C]$

• In words: the average effect on outcome of treatment for a random draw from the population

Average Treatment Effect Regression

• If we had perfect randomization then we could run the following regression

 $Y_i = \alpha + \beta T_i + \epsilon_i$

• Then $\hat{\beta} = ATE$

Average Treatment Effect with Covariates

• Typically we only have partial randomization conditional on a set of covariates

$$ATE = E[ATE(X)] = E[Y_i^T - Y_i^C | X = x,] = E[Y_i^T - Y_i^C]$$

 In words: the average effect on outcome of treatment for a random draw conditional on X

Average Treatment Effect Regression

• To get the ATE we just include the covariates and run the following regression

 $Y_i = \alpha X_i + \beta T_i + \epsilon_i$

• Then $\hat{\beta} = ATE$

Calculating the Average Treatment Effect on the Treated (ATT) and Untreated (ATUT)

Average Treatment Effect on the Treated

ATT = E[ATT(X)] $= E[Y_i^T - Y_i^C | X = x, T = 1] = E[Y_i^T - Y_i^C | T = 1]$

• In words: the average effect on outcome of treatment for a random draw from the subpopulation selecting (or assigned) treatment

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Average Treatment Effect on the Untreated

ATUT = E[ATUT(X)] $= E[Y_i^T - Y_i^C | X = x, T = 0] = E[Y_i^T - Y_i^C | T = 0]$

 In words: the average effect on outcome of treatment for a random draw from the subpopulation selecting (or assigned) no treatment

How Are All these Different?

• When we have random assignment

 $E[Y_i^T | T = 1 - E[Y_i^C | T = 1] = ATT = E[Y_i^T] - E[Y_i^C] = ATE$

- When assignment is not random and we have heterogeneous effects the ATE and ATT can be very different
 - ATE averages across gains from units that might never be subject to treatment

Calculating the Local Average Treatment Effect (LATE)

Intent to Treat (ITT)

- In some RCTs, actual treatment (*T*) is distinct from the variable that is randomized (*Z*)
- Alternatively, in a non-experimental case we can think of an instrument that we observe that affects treatment assignment but not outcome
 - Propensity Score
 - Instrumental Variable

Intent to Treat (ITT)

• In these cases our standard methods calculate the Intent to Treat estimate (ITT) instead of the ATE

 $ITT = E[Y_i | Z = 1] - E[Y_i | Z = 0]$

From ITT to LATE

- Without going into too much detail about IVs
 - Lets assume *Z* is random and therefore can, in principle, be a valid instrument for *T*
 - Lets also assume that $Cov(Z_i, \epsilon_i) = 0$

From ITT to LATE

• We can write the effect of the randomized variable (*Z*) on the outcome as

 $Cov(Y_i, Z_i) = Cov(\beta T_i + \epsilon_i, Z_i) = \beta Cov(T_i, Z_i)$

• So then $\beta = \frac{Cov(Y_i, Z_i)}{Cov(T_i, Z_i)}$

Estimating the LATE

• Our estimate of the treatment effect is then

$$\widehat{\beta_{LATE}} = \beta + \frac{Cov(Y_i, Z_i)}{Cov(T_i, Z_i)}$$

- This is known as the Local Average Treatment Effect (LATE)
 - It is only a local effect because it's the effect of T_i on Y_i for the subpopulation of compliers, and not the whole

Discussion: Deaton (2009)

- In terms of our irrigation example, suppose rainfall is our random variable (*Z*) that induces treatment
 - What exactly does the LATE measure?
 - What is the population over which we are averaging?
 - In our example is the LATE a parameter of interest?

Discussion: Deaton (2009)

- In terms of our irrigation example, suppose rainfall is our random variable (*Z*) that induces treatment
 - What exactly does the LATE measure?
 - What is the population over which we are averaging?
 - In our example is the LATE a parameter of interest?
- The LATE will typically *not* be the average effect over the treatment nor will it be the average effect over all participants
 - If treatment effects are heterogeneous, what will the LATE measure?

Calculating the Marginal Treatment Effect (MTE)

Marginal Treatment Effect

• Consider a treatment allocation rule

$$T = 1(\nu_i \le \gamma Z_i)$$

- This rule allocation could be random assignment or a propensity score or some instrument
- For a particular value of γZ_i the marginal individual is the one with

$$v_i = \gamma Z_i$$

Marginal Treatment Effect

 $MTE = E[MTE(\gamma Z_i)]$ = $E[Y_i^T - Y_i^C | X = x, v_i = \gamma Z_i] = E[Y_i^T - Y_i^C | v_i = \gamma Z_i]$

- In words: the average impact for the marginal individual receiving treatment among those with value of the index equal to γZ_i
- It turns out that all the treatment effects we have looked at can be written as weighted averages of the MTE

MTE and Other Treatment Effects

- Assume
 - All individuals fall within the region of common support $U_i \in (0,1)$
 - We can measure the probability of assignment to treatment as P(Z)
- Then the ATE is

$$ATE = \int_{u=0}^{u=1} \Delta^{MTE}(p)dp$$

MTE and Other Treatment Effects

• Then the ATT is

$$ATT = \int_{u=0}^{u=P(z)} \Delta^{MTE}(p) dp$$

• Then the LATE is

$$LATE = \int_{u=P(z')}^{u=P(z)} \Delta^{MTE}(p) dp$$

Estimating the MTE

• We can then estimate the MTE as:

$$\beta_{MTE} = \lim_{P(z') \to P(z)} \frac{E[Y|P(Z) = P(z)] - E[Y|P(Z) = P(z')]}{P(z) - P(z')}$$

- This looks messy but it is just a slight variation on the LATE estimator which is also the IV estimator
 - We will discuss in more detail tomorrow

Estimating the MTE

- Use two stage estimation procedure
 - First, estimate participation as a function of the instrument *Z* to obtain the propensity score $\hat{P}(Z)$
 - Second, estimate the nonparametric local linear regression of the outcome on $\hat{P}(Z)$

$$Y_{i} = [T_{i} * Y_{i}^{T} + (1 - T_{i}) * Y_{i}^{C}]$$

– Evaluating this function at different values of $\hat{P}(Z)$ yields the MTE function

Issues in Establishing the Validity of Your Treatment Effect

Replication

- Social science research is often a solitary activity.
- Researchers make decisions about coding, which groups to compare, time periods to consider, etc.
- Publication bias--significant results get published, insignificant ones remain in the file drawer
- How can we know whether a finding is correct?
- Provide incentives to replicate important papers in development economics

Registries

- Issues with RCTs--running analyses on different groups until you find something that is statistically significant.
- But even if there is no true causal effect, statistical analyses would find a significant effect
 5 percent of the time
- Movement towards registries
 - Before the experiment, register what outcomes will be examined and by which groups

Is Deworming Really "All That"?

- Miguel and Kremer (2004) did an RCT in Kenya with deworming medicine
- MK found large effects on school attendance in treated groups and also spillover effects
- 3ie commissioned a replication by Davey et al.
- They did some new analyses--media picked up that MK was debunked
- Issues--looking year by year, measurement of the radius of spillover effects

Resources

- International Initiative for Impact Evaluation (3ie)
 - Provides grants and commissions studies
 - Leader in replication
 - http://www.3ieimpact.org
- Abdul Latif Jameel Poverty Action Lab
 - Advocates of RCTs
 - povertyactionlab.org
- World Bank Development Impacts blog
 - <u>http://blogs.worldbank.org/impactevaluations/</u>

Research Grants

- We are now just over half way through the workshop
- We wanted to end early and provide an opportunity for us to discuss with each of you
 - Our thoughts on your grant proposal
 - Ways to improve and prepare for the Phase 2 proposal

