Critiques, Complications and other things to worry about

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

Critique: Deaton (2009)

- Instruments: exogenous versus external
 - E.g. rail stations and poverty (river; earthquake)
 - Irrigation dams (land gradient)
 - Child class size; some people don't stay treated (heterogeneous response to instrument)
 - Intent to Treat vs Treatment. Really evaluating those communities/individuals who were induced to change. May not be representative of all communities

Critique: Deaton (2009)

- Important question is not 'if it works' but 'why (or when and where) it works'
 - **RCT**:
 - relies on mean; what if distributions between T and C differ?
 - Heterogeneity (one guy wins big, everyone else loses)
 - Scaling up? (general equilibrium effects)
 - *Generalizability is it meaningful?*
 - Controlling for other things can be a problem with heterogeneity
- Tests of theory versus test of programs (help with external validity)

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

Multiple outcomes and scales

- Different ecological and economic outcomes from the same project
- May occur at different scales
- The appropriate unit of observation is not always obvious
- And the unit of observation will affect the 'match' of controls
 - Too large: bad matches, lose precision, imprecise measure of treatment
 - Too small: higher probability of spatial autocorrelation, can lead to errors in variables bias

Smaller is not always better

> Y random, X random, T clustered

Things get worse when T depends on X

Number of Units in Each Agg Group

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

Heterogeneity

- Ideally build into experimental design
- Often people do ex-post heterogeneity analysis (parametric)
 - E.g. interact treatment (new seed variety) with soil type, or rainfall
- (semi-parametric) Locally-weighted regressions
 - Allow parameters to vary over space

Within Park Variation

Distributional Effects

- MTE
- Quantile (conditional, unconditional, IV)
 - May be very important if treatment is intended to specifically help some households. May not expect to see an overall effect
 - E.g. nutrition programs designed to reduce stunting
 - E.g.2 agricultural technologies only designed to help reduce yield loss from extreme heat

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

Spillovers (when SUTVA falls apart...)

- Social Networks
- Peer Effects
- Threshold Effects
- Spatial Spillovers
- Bias estimated treatment effects
- Often important in and of themselves
- Ideally integrate into research design

Social Network Effects

- Where a program is placed within a social network matters
- Banerjee et al (2011) microfinance in India
- Songersemsawas et al (2015) – contract choice

Peer Effects

- Reflection Problem
- Can solve through using characteristics of friends of friends as
 instruments
- Do peer effects through social networks affect cash crop revenue?
 - Input use in new crops (Conley and Udry 2010)
 - Land allocation to new crops (Munshi 2004)
 - In market mechanisms (Fafchamps and Minton 1998, 1999, 2002; Michelson 2015)
 - In agricultural revenue (Songsermsawas et al 2015b)
- from friends?

Mechanism?

- Influence versus Information (Montgomery and Casterline)
- Oster and Thornton (2012)
 - Wanting to do like friends?
 - Switching behavior because of friends' positive benefits?
 - Learning how to use a new technology

Within village spillovers and threshold effects

Within Village Spillovers

- Can identify through different intensity of treatment (Baird et al 2015)
- Can identify through modeling peer networks Threshold Effects
- Idea that an intervention needs to reach a certain saturation point to have an effect

• Only some people eligible

Control Village

illinois.edu

186

• Only some people eligible

Between Villages: Even if one randomizes....

	Spatial Correlation Parameter								
	0.00	0.10	0.25	0.50	0.75	0.90			
DD									
% Bias	-0.9	1.2	3.3	21.2	83.0	282.4			
Rejection rate (95% Conf.)	93.4	94.5	92.1	86.0	68.1	50.2			
DD with village fixed-effects									
% Bias	-0.9	1.2	3.3	21.2	83.0	282.4			
Rejection rate (95% Conf.)	93.2	94.3	92.0	85.9	68.1	50.1			
DD with individual fixed-effects									
% Bias	-0.9	1.2	3.3	21.2	83.0	282.4			
Rejection rate (95% Conf.)	75.6	77.4	73.8	61.4	35.7	18.5			
Spatial AR-DD									
% Bias	-0.9	0.7	-0.8	-0.2	0.3	0.2			
Rejection rate (95% Conf.)	93.6	94.7	92.7	93.9	93.2	94.2			

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN **Spillovers: Forest Leakage from Protected** Areas (PAs)

Avoided forest loss (1993 vs 2009):

- Model 0: DiD, FE
- Model 1: DiD with Matching
- Model 2: DiD with Spatial Matching
- Model 3: Removing neighbouring controls

Even without explicit spillovers...

- Error terms across neighbouring observations may be correlated
 - E.g. plot level data correlated by household
 - All households in a village being treated
 - Clustering standard errors

Spatially-correlated errors

	Spatial Correlation Parameter							
	0.00	0.10	0.25	0.50	0.75	0.90		
DD								
% Bias	-0.1	-0.9	-0.6	-1.2	-0.6	4.4		
Rejection rate (95% Conf.)	87.1	86.8	86.2	80.6	57.7	19.1		
DD with village fixed-effects								
% Bias	-0.1	-0.9	-0.6	-1.2	-0.6	4.4		
Rejection rate (95% Conf.)	87.0	86.5	86.0	80.6	57.7	19.1		
DD with individual fixed-effects								
% Bias	-0.1	-0.9	-0.6	-1.2	-0.6	4.4		
Rejection rate (95% Conf.)	64.6	65.3	62.6	54.1	25.4	4.9		
Spatial Error-DD								
% Bias	-0.1	-0.9	-0.5	-1.1	-0.1	1.9		
Rejection rate (95% Conf.)	87.7	86.6	87.1	83.0	78.6	76.2		

And then things got complicated...

- 1. Deaton critique
- 2. Choice of scale
- 3. Heterogeneity and Distributional effects
- 4. Spillovers
- 5. A Role for Theory

A role for theory

- And a role for multidisciplinary work;
- Integrating qualitative data
- Particularly important if 'theory of change' is not transparent
- Avoids 'kitchen sink' approach
 - E.g. measuring effects of social capital
 - E.g. estimating adoption

