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Abstract. This article introduces the user-written command randcoef, which
fits the correlated random effects (CRE) and correlated random coefficient (CRC)
models discussed in Suri (2011). While the approach has been around for a decade,
its use has been limited by the computationally intensive nature of the estimation
procedure that relies on using the optimal minimum distance (OMD) estimator.
The command can accommodate up to five rounds of panel data and offers several
options, including alternative weight matrices for estimation and the inclusion of
additional endogenous regressors. We also present post-estimation analysis using
sample data in order to facilitate understanding and interpretation of results.
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1 Introduction

Random coefficient models have frequently been used to help explain heterogeneity
in returns to human capital (Heckman and Vytlacil 1998) or the adoption of a new
technology (Suri 2011). At its most basic, the random coefficient model can be written
as:

yi = α0i + α1ihi. (1)

The outcome variable (earnings inHeckman and Vytlacil (1998), maize yields in Suri
(2011)), is a function of the rate of return, α1i, to a choice variable hi (for example,
investment in human capital or technology adoption). The rate of return varies by
individual, as does the intercept term. Assume α0i = ᾱ0+ ε0i and α1i = ᾱ1+ ε1i, where
ε0i and ε1i are zero in expectation. We can then rewrite equation (1) as:

yi = ᾱ0 + ᾱ1hi + (ε0i + ε1ihi) . (2)

The difficulty in identifying the model arises when α1i, the rate of return for the individ-
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ual, is correlated with the individual’s choice of hi. In the case of schooling, this would
be the case if an individual’s return to education influences her choice to invest in edu-
cation. In the case of technology adoption, the classic example is when an individual’s
return to adoption influences his choice to adopt the new technology.

The literature has produced several alternative approaches to identifying the cor-
related random coefficient (CRC) model in equation (2). Both Heckman and Vytlacil
(1998) and Wooldridge (2003) use instrumental variables. More recently, Suri (2011)
developed a generalization of the Chamberlain (1984) fixed effects method and applied
it to the CRC model. In this article, we present the randcoef command, which en-
ables a user to fit Suri’s CRC model. The approach, which is structural in nature, uses
a set of reduced form parameters to recover the structural parameters of interest via
the optimal minimum distance estimator (OMD). The command allows for the use of
equally weighted minimum distance (EWMD) or diagonally weighted minimum distance
(DWMD) instead of the inverse of the variance-covariance matrix of the reduced form
estimates. Additionally, it allows for the inclusion of exogenous covariates as controls
and can also accommodate the inclusion of an additional endogenous covariate.1

The structural approach to identifying the CRC model has several advantages over
the instrumental variables approach. First, it does not require the researcher to choose
an instrument and to defend the exclusion restriction. Rather, identification relies
on the linear projection of an individual’s rate of return onto their complete history of
adoption, similar to the correlated random effects method pioneered by Mundlak (1978)
and Chamberlain (1984). Second, the approach allows for a test of the importance of
the individual’s rate of return (comparative advantage in Suri’s terminology) in the
adoption decision. Third, the approach allows researchers to recover the distribution
of the rate of return for post-estimation analysis, which we discuss using the practical
example of seed adoption decisions among a sample of farmers in Ethiopia.

2 The CRE and CRC models

This section lays out the math behind the calculations of the correlated random effects
(CRE) and correlated random coefficients (CRC) models plus the CRC model with an
additional endogenous covariate. Two-period versions of these models are developed in
Suri (2011). The methodology does not depend on the number of periods in the data
but rather on the specifics of the structural equations, reduced form equations, and
variance-covariance matrix do vary depending on the number of periods. To fix ideas
we outline the calculations of a three-period model. However, the randcoef command
can accommodate anywhere between two and five periods of panel data.

1. In the case of the hybrid maize adoption story presented in Suri (2011) this additional endogenous
variable is the choice to apply fertilizer in addition to the choice to adopt hybrid maize.
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2.1 Three-period CRE model

We start with a simple three-period, no covariates CRE model, for which the data
generating process is given by:

yit = δ + βhit + αi + uit, (3)

where yit is the variable of interest for individual i at time t. The outcome of interest
is a function of a binary indicator of adoption (hit), an indicator for the individual (αi)
and an idiosyncratic error term uit ∼ N (0, σ2

u). We assume strict exogeneity of the
error term.

In a fixed effects (FE) model the unique individual indicators are simply dummy
variables. In the CRE model we replace the FEs by their linear projections upon the
history of the individual’s adoption behavior:

αi = λ0 + λ1hi1 + λ2hi2 + λ3hi3 + νi, (4)

where hi1 is an indicator that equals one if individual i adopted the technology at t = 1
and the λ’s are the projection coefficients. Substituting equation (4) into equation (3)
we get:

yit = δ + βhit + λ0 + λ1hi1 + λ2hi2 + λ3hi3 + νi + uit. (5)

Let εit = νi + uit where εit is strictly exogenous. For each time period we have:

yi1 = (δ + λ0) + (β + λ1)hi1 + λ2hi2 + λ3hi3 + εi1, (6)

yi2 = (δ + λ0) + λ1hi1 + (β + λ2)hi2 + λ3hi3 + εi2, (7)

yi3 = (δ + λ0) + λ1hi1 + λ2hi2 + (β + λ3)hi3 + εi3. (8)

These are the structural equations for each period. Note that we cannot identify the
variable of interest (β) by estimating these equations. Instead, we estimate the following
reduced form equations:

yi1 = δ1 + γ1hi1 + γ2hi2 + γ3hi3 + ni1, (9)

yi2 = δ2 + γ4hi1 + γ5hi2 + γ6hi3 + ni2, (10)

yi3 = δ3 + γ7hi1 + γ8hi2 + γ9hi3 + ni3. (11)

We can use the nine reduced form parameters to calculate the four structural parameters.
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This requires placing the following restrictions on the parameters:

γ1 = (β + λ1) γ4 = λ1 γ7 = λ1

γ2 = λ2 γ5 = (β + λ2) γ8 = λ2

γ3 = λ3 γ6 = λ3 γ9 = (β + λ3)

We estimate equations (9)-(11) as a set of seemingly unrelated regressions and then
preserve the nine reduced form parameters in a vector π[9×1]. We can also preserve
the variance-covariance matrices from the three regressions in a large symmetric block
matrix V[9×9]. The restrictions on the γ’s can be expressed as π = Hδ where H[9×4] is
a restriction matrix embodying the nine restrictions on γ and δ[4×1] is a vector of our
four structural parameters.

The optimal minimum distance (OMD) function is:

min
δ

= {π −Hδ}′
V−1 {π −Hδ} . (12)

Solving for δ we get:

δ =
(
H

′
V−1H

)−1

H
′
V−1π, (13)

which is the optimal minimum distance estimator. The key to getting the OMD to
produce the correct estimates requires making sure the restriction matrix is correctly
specified. In the three-period CRE case we have:

⎛
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γ1
γ2
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=

⎡
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1 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎝

β
λ1

λ2

λ3

⎞
⎟⎟⎠ , (14)

which is just π = Hδ.

Finally, note that the above allows us to calculate the OMD coefficients but not the
structural variance-covariance matrix, which requires taking derivatives of the restric-
tions. In the CRE model this is trivial since all the derivatives are equal to one.
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2.2 Three-period CRC model

The three-period CRC model is methodologically similar to the CRE model but the
specifics of the structural equations, reduced form equations, and restrictions differ.
The data generating process is given by:

yit = δ + βhit + θi + φθihit + τi + uit. (15)

where φ is the coefficient on an individual’s rate of return or comparative advantage
in adoption (θi), τi is an individual’s absolute advantage (equivalent to a household
FE), and all other terms are as previously defined. To estimate equation (15), we must
eliminate the dependence of θi on hit. To do this, Suri (2011) and Chamberlain (1984)
replace θi with its linear projection onto the individual’s full history of adoption:

θi = λ0+λ1hi1+λ2hi2+λ3hi3+λ4hi1hi2+λ5hi1hi3+λ6hi2hi3+λ7hi1hi2hi3+νi, (16)

Note that we must include the history of interactions because while the projection error
νi is uncorrelated with each individual history it is not necessarily uncorrelated with
the product of the histories.

Substituting equation (16) into equation (15) and writing out each time period’s
function gives:

yi1 = (δ + λ0) + [β + φλ0 + λ1(1 + φ)]hi1 + λ2hi2 + λ3hi3 + [φλ2 + λ4(1 + φ)]hi1hi2

+[φλ3 + λ5(1 + φ)]hi1hi3 + λ6hi2hi3 + [φλ6 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi1 + ui1),

yi2 = (δ + λ0) + λ1hi1 + [β + φλ0 + λ2(1 + φ)]hi2 + λ3hi3 + [φλ1 + λ4(1 + φ)]hi1hi2

+λ5hi1hi3 + [φλ3 + λ6(1 + φ)]hi2hi3 + [φλ5 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi2 + ui2),

yi3 = (δ + λ0) + λ1hi1 + λ2hi2 + [β + φλ0 + λ3(1 + φ)]hi3 + [φλ1 + λ5(1 + φ)]hi1hi3

+λ4hi1hi2 + [φλ2 + λ6(1 + φ)]hi2hi3 + [φλ4 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi3 + ui3).

These are the structural yield equations for each period. From these we can estimate
the following reduced form equations:
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yi1 = δ1 + γ1hi1 + γ2hi2 + γ3hi3 + γ4hi1hi2 + γ5hi1hi3 + γ6hi2hi3 + γ7hi1hi2hi3 + ni1,
(17)

yi2 = δ2 + γ8hi1 + γ9hi2 + γ10hi3 + γ11hi1hi2 + γ12hi1hi3 + γ13hi2hi3 + γ14hi1hi2hi3 + ni2,
(18)

yi3 = δ3 + γ15hi1 + γ16hi2 + γ17hi3 + γ18hi1hi2 + γ19hi1hi3 + γ20hi2hi3 + γ21hi1hi2hi3 + ni3.
(19)

These equations give 21 reduced form coefficients (γ1−γ21) from which we can estimate
ten structural parameters (β, φ, λ0 − λ7). Note that if we normalize the θ’s so that∑

θi = 0 we can effectively eliminate λ0 and only need to estimate nine structural
parameters.

The necessary restrictions to identify the structural parameters are:

γ1 = [β + φλ0 + λ1(1 + φ)] γ8 = λ1 γ15 = λ1

γ2 = λ2 γ9 = [β + φλ0 + λ2(1 + φ)] γ16 = λ2

γ3 = λ3 γ10 = λ3 γ17 = [β + φλ0 + λ3(1 + φ)]
γ4 = [φλ2 + λ4(1 + φ)] γ11 = [φλ1 + λ4(1 + φ)] γ18 = λ4

γ5 = [φλ3 + λ5(1 + φ)] γ12 = λ5 γ19 = [φλ1 + λ5(1 + φ)]
γ6 = λ6 γ13 = [φλ3 + λ6(1 + φ)] γ20 = [φλ2 + λ6(1 + φ)]
γ7 = [φλ6 + λ7(1 + φ)] γ14 = [φλ5 + λ7(1 + φ)] γ21 = [φλ4 + λ7(1 + φ)]

Similar to before, we estimate equations (17)-(19) as seemingly unrelated regressions
and preserve the 21 reduced form parameters in a vector π[21×1], the variance-covariance
matrices in a large symmetric block matrix V[21×21], the restrictions as H[21×9], and
the structural parameters as δ[9×1].

We now need to take derivatives of the elements in Hδ with respect to each of
the structural parameters. This gives us the 63 derivatives, which we preserve in the
structural variance-covariance matrix to facilitate calculation of standard errors.

2.3 Three-period CRC model with endogenous covariates

Following Suri (2011), we expand the three-period CRC model to allow for an additional
endogenous covariate. This requires that we not only account for the whole history of
adoption but those histories interacted with the endogenous variable. We start by
including the endogenous covariate, fit, in the data generating process:

yit = δ + βhit + ρfit + θi + φθihit + τi + uit. (20)

We can write out the linear projection of the θi’s on the history of the individual’s
adoption behavior of both endogenous technologies:
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θi = λ0 + λ1hi1 + λ2hi2 + λ3hi3 + λ4hi1hi2 + λ5hi1hi3 + λ6hi2hi3 + λ7hi1hi2hi3 + λ8fi1

+ λ9fi2 + λ10fi3 + λ11hi1fi1 + λ12hi2fi1 + λ13hi3fi1 + λ14hi1hi2fi1 + λ15hi1hi3fi1

+ λ16hi2hi3fi1 + λ17hi1hi2hi3fi1 + λ18hi1fi2 + λ19hi2fi2 + λ20hi3fi2 + λ21hi1hi2fi2

+ λ22hi1hi3fi2 + λ23hi2hi3fi2 + λ24hi2hi2hi3fi2 + λ25hi1fi3 + λ26hi1hi2fi3 + λ27hi3fi3

+ λ28hi1hi2fi3 + λ29hi3fi3 + λ30hi2hi3fi3 + λ31hi2hi2hi3fi3 + νi. (21)

Substituting the above into equation (20) we can write out the structural equations for
each time period.2 From these equations we can estimate the following reduced form
equations:

yi1 = δ1 + γ1hi1 + γ2hi2 + γ3hi3 + γ4hi1hi2 + γ5hi1hi3 + γ6hi2hi3 + γ7hi1hi2hi3

+ γ8fi1 + γ9fi2 + γ10fi3 + γ11hi1fi1 + γ12hi2fi1 + γ13hi3fi1 + γ14hi1hi2fi1

+ γ15hi1hi3fi1 + γ16hi2hi3fi1 + γ17hi1hi2hi3fi1 + γ18hi1fi2 + γ19hi2fi2

+ γ20hi3fi3 + γ21hi1hi2fi2 + γ22hi1hi3fi2 + γ23hi2hi3fi2 + γ24hi1hi2hi3fi2

+ γ25hi1fi3 + γ26hi2fi3 + γ27hi3fi3 + γ28hi1hi2fi3 + γ29hi1hi3fi3

+ γ30hi2hi3fi3 + γ31hi1hi2hi3fi3 + (νi + φνihi1 + ui1), (22)

yi2 = (δ + λ0) + γ32hi1 + γ33hi2 + γ34hi3 + γ35hi1hi2 + γ36hi1hi3 + γ37hi2hi3

+ γ38hi1hi2hi3 + γ39fi1 + γ40fi2 + γ41fi3 + γ42hi1fi1 + γ43hi2fi1 + γ44hi3fi1

+ γ45hi1hi2fi1 + γ46hi1hi3fi1 + γ47hi2hi3fi1 + γ48hi1hi2hi3fi1 + γ49hi1fi2

+ γ50hi2fi2 + γ51hi3fi2 + γ52hi1hi2fi2 + γ53hi1hi3fi2 + γ54hi2hi3fi2

+ γ55hi1hi2hi3fi2 + γ56hi1fi3γ57hi2fi3 + γ58hi3fi3 + γ59hi1hi2fi3

+ γ60hi1hi3fi3 + γ61hi2hi3fi3 + γ62hi1hi2hi3fi3 + (νi + φνihi2 + ui2), (23)

yi3 = (δ + λ0) + γ63hi1 + γ64hi2 + γ65hi3 + γ66hi1hi2 + γ67hi1hi3 + γ68hi2hi3

+ γ69hi1hi2hi3 + γ70fi1 + γ71fi2 + γ72fi3 + γ73hi1fi1 + γ74hi2fi1 + γ75hi3fi1

+ γ76hi1hi2fi1 + γ77hi1hi3fi1 + γ78hi2hi3fi1 + γ79hi1hi2hi3fi1 + γ80hi1fi2

+ γ81hi2fi2 + γ82hi3fi3 + γ83hi1hi2fi2 + γ84hi1hi3fi2 + γ85hi2hi3fi2

+ γ86hi1hi2hi3fi2 + γ87hi1fi3 + γ88hi2fi3 + γ89hi3fi3 + λ90hi1hi2fi3

+ γ91hi1hi3fi3 + γ92hi2hi3fi3 + γ93hi1hi2hi3fi3 + (νi + φνihi3 + ui3). (24)

2. Suri (2011) argues for the need to include the full history of adoption in the projection to completely
control for its endogeneity and thus ensure that E[vihithit] = 0. Given this fact, we are not entirely
sure why she does not include all possible interactions of the additional endogenous variable, fit.
Since the randcoef package is designed to implement the estimation procedure as laid out in Suri
(2011), we follow her definition of the projection as in equation (21).
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These equations give 93 reduced form coefficients (γ1−γ93) from which we can estimate
34 structural parameters (λ1 − λ34, ρ, β, φ). The restrictions are:

γ1 = [λ1(1 + φ) + β + φλ0] γ32 = λ1 γ63 = λ1

γ2 = λ2 γ33 = [λ2(1 + φ) + β + φλ0] γ64 = λ2

γ3 = λ3 γ34 = λ3 γ65 = [λ3(1 + φ) + β + φλ0]
γ4 = [λ4(1 + φ) + φλ2] γ35 = [λ4(1 + φ) + φλ1] γ66 = λ4

γ5 = [λ5(1 + φ) + φλ3] γ36 = λ5 γ67 = [λ5(1 + φ) + φλ1]
γ6 = λ6 γ37 = [λ6(1 + φ) + φλ3] γ68 = [λ6(1 + φ) + φλ2]
γ7 = [λ7(1 + φ) + φλ6] γ38 = [λ7(1 + φ) + φλ5] γ69 = [λ7(1 + φ) + φλ4]
γ8 = [λ8 + ρ] γ39 = λ8 γ70 = λ8

γ9 = λ9 γ40 = [λ9 + ρ] γ71 = λ9

γ10 = λ10 γ41 = λ10 γ72 = [λ10 + ρ]
γ11 = [λ11(1 + φ) + φλ8] γ42 = λ11 γ73 = λ11

γ12 = λ12 γ43 = [λ12(1 + φ) + φλ8] γ74 = λ12

γ13 = λ13 γ44 = λ13 γ75 = [λ13(1 + φ) + φλ8]
γ14 = [λ14(1 + φ) + φλ12] γ45 = [λ14(1 + φ) + φλ11] γ76 = λ14

γ15 = [λ15(1 + φ) + φλ13] γ46 = λ15 γ77 = [λ15(1 + φ) + φλ11]
γ16 = λ16 γ47 = [λ16(1 + φ) + φλ13] γ78 = [λ16(1 + φ) + φλ12]
γ17 = [λ17(1 + φ) + φλ16] γ48 = [λ17(1 + φ) + φλ15] γ79 = [λ17(1 + φ) + φλ14]
γ18 = [λ18(1 + φ) + φλ9] γ49 = λ18 γ80 = λ18

γ19 = λ19 γ50 = [λ19(1 + φ) + φλ9] γ81 = λ19

γ20 = λ20 γ51 = λ20 γ82 = [λ20(1 + φ) + φλ9]
γ21 = [λ21(1 + φ) + φλ23] γ52 = [λ21(1 + φ) + φλ18] γ83 = λ21

γ22 = [λ22(1 + φ) + φλ20] γ53 = λ22 γ84 = [λ22(1 + φ) + φλ18]
γ23 = λ23 γ54 = [λ23(1 + φ) + φλ20] γ85 = [λ23(1 + φ) + φλ19]
γ24 = [λ24(1 + φ) + φλ23] γ55 = [λ24(1 + φ) + φλ22] γ86 = [λ24(1 + φ) + φλ21]
γ25 = [λ25(1 + φ) + φλ10] γ56 = λ25 γ87 = λ25

γ26 = λ26 γ57 = [λ26(1 + φ) + φλ10] γ88 = λ26

γ27 = λ27 γ58 = λ27 γ89 = [λ27(1 + φ) + φλ10]
γ28 = [λ28(1 + φ) + φλ26] γ59 = [λ28(1 + φ) + φλ25] γ90 = λ28

γ29 = [λ29(1 + φ) + φλ27] γ60 = λ29 γ91 = [λ29(1 + φ) + φλ25]
γ30 = λ30 γ61 = [λ30(1 + φ) + φλ27] γ92 = [λ30(1 + φ) + φλ26]
γ31 = [λ31(1 + φ) + φλ30] γ62 = [λ31(1 + φ) + φλ29] γ93 = [λ31(1 + φ) + φλ28]

As before, we estimate equations (22) - (24) and preserve the 93 reduced form parameters
in a vector π[93×1], the variance-covariance matrices in a large symmetric block matrix
V[93×93], the restrictions as H[93×34], and the structural parameters as δ[34×1]. To
calculate standard errors we take derivatives of the elements in Hδ with respect to each
of the structural parameters.

As one can see, the complexity of the problem grows exponentially. The addition
of each new period requires the estimation of only one additional structural parameter
in the CRE model but 2T − 1 parameters in the CRC models. Table 1 summarizes
the number of structural and reduced form parameters that must be estimated in each
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model for up to five time periods. We believe that it is this computational intensity
that has limited the usefulness of Suri’s approach to estimating CRC models. Of the
320+ papers that cited Suri (2011) as of 2017, only one (a working paper) has actually
implemented her method of estimation. The randcoef command is designed to lower
this hurdle and allow for a broader application of the estimation procedure.

Table 1: Number of parameters estimated in each model

Period Parameter CRE CRC CRC Endogenous

2
Structural 2 + 1 = 3 3 + 2 = 5 (3× 3 + 2) + 3 = 14
Reduced 2× 2 = 4 3× 2 = 6 11× 2 = 22

3
Structural 3 + 1 = 4 7 + 2 = 9 (7× 4 + 3) + 3 = 34
Reduced 3× 3 = 9 7× 3 = 21 31× 3 = 93

4
Structural 4 + 1 = 5 15 + 2 = 17 (15× 5 + 4) + 3 = 82
Reduced 4× 4 = 16 15× 4 = 60 79× 4 = 316

5
Structural 5 + 1 = 6 31 + 2 = 33 (31× 6 + 5) + 3 = 194
Reduced 5× 5 = 25 31× 5 = 155 191× 5 = 955

3 Data Considerations

Including the full history of adoption (the adoption decision in each year plus all inter-
actions) in the projection of θi allows for the assumption that there is no correlation
between νi and the decision to adopt (Chamberlain 1984; Suri 2011). However, iden-
tification of φ in Suri’s CRC model when adoption is binary requires that all possible
adoption histories are observed in the data. If this is not the case, then the model will
suffer from multicollinearity. This is both a result of how Suri constructed the projection
of θi and of measuring adoption as a binary variable. For relatively small data sets, or
as the number of time periods in a panel grows, there will be a higher probability that
one of the adoption histories is not observed in the data. This is not an estimation or
coding problem in the command, but rather an inherent limitation of the method.

To illustrate this, assume we have two time periods in the panel. The projection of
θi onto adoption will be:

θi = λ0 + λ1hi1 + λ2hi2 + λ3hi1hi2 + νi. (25)

In this case, there will be four potential adoption histories: 1) those that never adopt
(Never-Adopters), 2) those that always adopt (Always-Adopters), 3) those that adopted
in period two, but not in period one (Adopters), and 4) those that adopted in period
one, but dis-adopted in period two (Dis-adopters). If adoption corresponds to a 1 and
non-adoption a 0, then each history corresponds to a particular tuple of choices. For
the two-period case, Always-Adopters would be represented by the tuple (1, 1), Never-
Adopters represented by the tuple (0, 0), Adopters by the tuple (0, 1), and Dis-adopters
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by the tuple (1, 0).

Table 2 summarizes the histories as they correspond to the variables in the projec-
tion. Note that the use of the intercept (λ0) implicitly means that the Never-Adopters
are captured by this intercept and so are not included in the table.

Table 2: Adoption histories

hi1 hi2 hi1hi2

(1,1) 1 1 1
(1,0) 1 0 0
(0,1) 0 1 0

From Table 2, we can see that if any one of the histories is not observed in the data
(equivalent to a row disappearing from the table), then at least two of the independent
variables becomes collinear by construction. For instance, if there were no Adopters in
the data, then the last row would be missing. In this case hi2 and hi1hi2 would now
be perfectly collinear (the highlighted cells in the table). As such, estimation of Suri’s
CRC model requires a large enough dataset to ensure all adoption histories are present
or, alternatively, must measure adoption as a continuous.

4 Fitting the CRE and CRC models using Stata

4.1 Syntax

The randcoef command estimates both the CRE (default) and the CRC models.3 The
command follows the same general syntax as the sureg command. However, it does not
allow for equation naming since the independent variables are the same in all regressions.
The command’s syntax requires the order of both the outcome and choice variables to
be listed chronologically. The command uses the number of dependent variables to
know how many time periods the CRE or CRC model contains and then generates the
necessary interaction terms and calculates the appropriate restriction matrix. If the user
wants to change the order of the variables, they can use the matrix option accordingly4

.

randcoef (depvar1 depvar2 depvar3 ...)
[
if
]
, choice(indepvar1 indepvar2

indepvar3 ...) endo(endovar1 endovar2 endovar3 ...)
[
options

]

3. Note that randcoef requires that the tuple package be installed.
4. Applies only for the CRE method
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4.2 Options

choice(indepvar1 indepvar2 indepvar3 ...) specifies the variables of interest organized
in the same order as the dependent variables. In the case of the CRC model, inter-
actions should not be included since they are created automatically by the program.
This option is required.

method(string) determines the method to be used: cre (default) or crc.

controls(varlist) allows for the addition of exogenous covariates as controls to the
underlying sureg regression.

showreg prints the output of the SUR regression.

matrix allows the user to specify the restriction matrix (for changing the order of
coefficients). Note that the restriction’s order is important since it must match the
order in which the parameters of interest are inputted in the SUR regressions. This
option is only allowed if the CRE method is specified. The restriction matrix for the
CRC method is preprogrammed automatically following that outlined in Suri (2011)
depending on the number of dependent variables.

endogenous(varlist) adds the ability to allow for one additional endogenous variable to
be added to the estimation. The interactions needed between the choice variables
and the endogenous variable are automatically created.

keep allows the user to preserve the interactions between the choice variables and the
endogenous ones (in the case the endogenous option is used) in the command line
after the estimation has taken place. If specified, running the command several times
requires dropping those variables.

weighting(string) specifies the weighting matrix to be used in estimation. This option
is only allowed if the CRC method is specified.

omd(default) Optimal Minumum Distance: uses the inverse of the variance-covariance
matrix of the reduced form estimates.

ewmd Equally Weighted Minimum Distance: uses the identity matrix.

dwmdDiagonally Weighted Minimum Distance: uses the OMD matrix, but with zeros
on the off-diagonals.

5 Interpreting Output

As an example of estimating and interpreting the CRC model we use household-level
adoption of improved chickpea in Ethiopia.5 The dependent variables are income per
capita in each of the three survey rounds (lnp08, lnp10, lnp14) while the choice
variables are adoption of improved chickpea in each period (icp08, icp10, icp14).

5. For a description of the data see Verkaart et al. (2017).
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We also include a set of exogenous covariates as controls (‘controls1’ ...).6 Note
that panels in a “long” format must be reshaped as “wide” prior to estimation. Output
from the CRC method using the OMD estimator is:

. randcoef lnp08 lnp10 lnp14, choice(icp08 icp10 icp14)
> controls(`controls1´ `controls2´ `controls3´) meth(CRC) keep
RUNNING MODEL WITH OMD WEIGHTING MATRIX

Equations used in sureg:lnp08 lnp10 lnp14 = icp08 icp10 icp14
> __00000C __00000D __00000E __00000F `controls1´ `controls2´ `controls3´

The model used is : method: CRC

The variables of interest are : icp08 icp10 icp14 __00000C __00000D __00000E
> __00000F `controls1´ `controls2´ `controls3´

Minimun Distance Estimator is being calculated

(output omitted )

With corresponding Parameters matrix:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

l1 .2241552 .1797628 1.25 0.212 -.1281735 .5764839
l2 .3692923 .1521381 2.43 0.015 .0711071 .6674774
l3 .164945 .1257764 1.31 0.190 -.0815722 .4114622
l4 -.97277 .575561 -1.69 0.091 -2.100849 .1553089
l5 .0193329 .2340247 0.08 0.934 -.4393471 .4780129
l6 -.2653933 .1585105 -1.67 0.094 -.5760682 .0452815
l7 .8201766 .6114319 1.34 0.180 -.3782078 2.018561
b .4408669 .235167 1.87 0.061 -.020052 .9017859

phi -.2547399 .6437777 -0.40 0.692 -1.516521 1.007041

In this case, the interactions for the choice variable are automatically created. Given
that keep is used, these interactions are available after the estimation for further anal-
ysis. Note that the magnitudes of the structural parameters from equation (16) are:
λ1 = 0.224, λ2 = 0.369, λ3 = 0.165, λ4 = −0.973, λ5 = 0.019, λ6 = −0.265, and
λ7 = 0.820. The aggregate returns to improved chickpea adoption is β = 0.441 while
φ = −0.255 is the coefficient on the individual’s rate of return or comparative advantage
in adoption. In this example the aggregate returns to adoption are significant but the
comparative advantage term is not. One would interpret this as a lack of significant
differences in comparative advantage in this economy. Returns to improved chickpea
adoption, at least in this sample, are homogeneous not heterogeneous.

Despite a lack of significant differences in the returns to adoption based on household
unobservables, we can still explore heterogeneity within the population by predicting
the θ̂ term for a given adoption history. We can recover θ̂ using equation (16) and our
structural OMD estimates. Given that each history is binary, and given that we observe
at least one household in each history, the projection is fully saturated. This procedure
results in eight mass points for the θ̂s.

6. Because our interest lies in the coefficient estimates for the structural parameters, and in the
interests of parsimony, we have only listed the locals for the control variables. A complete list of
the control variables and variable definitions is contained in the accompanying data and .do file,
which also allows for replication of results.



Barriga Cabanillas, Michler, Michuda, Tjernström 13

Once we have recovered the θ̂s, we can predict the average returns for a given
adoption history. This involves calculating β̂ + φ̂θ̂i, where β̂ is the average return to
improved varieties and each i is a specific adoption history. The results can be viewed
as the counterfactual returns for non-adopting households using weighted averages of
all possible returns. Again, since the histories are binary and the projection is fully
saturated, the process produces eight mass points, which we graph in Figures 1.

0
.2

.4
.6

Always adopter Mixed dis−adopter
Early adopter Late dis−adopter
Late adopter Early dis−adopter
Mixed adopter Never adopter

Figure 1: Distribution of returns to adoption

As the bars in Figure 1 make clear, returns to adoption are relatively homogeneous
across adoption history. Since φ is not significant, the weighted average across these
groups would yield β or the aggregate returns to adoption. If φ were significant we
would expect noticeable differences across the bars as returns would differ significantly
by adoption history. See Suri (2011) for graphs in which returns differ across groups.

6 Conclusions

Correlated random coefficient models can be used to understand a variety of activities
in which the return on the activity to the individual is correlated with the individual’s
choice to participate. Several methods exist to consistently estimate these models but
most rely on an instrumental variables approach. While the structural approach first
developed in Suri (2006) has been around for a decade, its use has been limited by the
computationally intensive nature of the estimation procedure. The randcoef package
allows users to estimate both CRE and CRC models and provides them with a variety
of estimation options. Additionally, the package allows for estimation using up to five
rounds of data and can accommodate an additional endogenous regressor. The hope is
that the package will lower the hurdle for implementing this approach and thereby add
another tool for estimating CRC models.
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