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1 Introduction

An empirical puzzle persists around why smallholder farmers in developing countries rapidly adopt

some valuable technologies while others, such as fertilizer and hybrid seeds, are not. The adoption

literature has tackled this question in a variety of ways, proposing answers to the puzzle that

include imperfections in credit markets (Croppenstedt et al., 2003), property rights (Place and

Swallow, 2000), learning externalities (Conley and Udry, 2010), and lack of commitment (Kremer

et al., 2011). Additionally, agricultural input costs are relatively high in Sub-Saharan Africa, partly

due to transportation costs and input market interventions (Byerlee and Deininger, 2013). One

explanation, proposed by Suri (2011), centers on heterogeneity. Even when average returns are high,

farmers may face heterogeneous returns based on their own, unobservable, comparative advantage

in adopting the new technology. Using a correlated random coefficient model, Suri (2011) confirms

this hypothesis for hybrid maize adoption in Kenya. According to this result, the empirical puzzle

is only a puzzle when researchers fail to adequately control for heterogeneity in returns to farmers.

Suri (2011) shows that in her data farmers with low net returns either fail to adopt or disadopt the

technology. This explanation of the puzzle has gained strong traction in the adoption literature,

as evinced by some 443 papers citing her results as of May 2018. Remarkably, though, no one has

attempted to reproduce these findings in a different context.

In this paper, we conduct an extension test of Suri’s (2011) findings, using the case of improved

chickpea adoption in Ethiopia. Implementing panel data methods common in the literature, we

show that adoption of the new technology does not increase yields compared to local varieties. This

result presents a puzzle that is distinct from the one usually considered in the adoption literature—

high adoption rates of a technology that does not significantly increase yields. We then explore

whether the low average returns for yields hide substantial heterogeneity by testing to see if Suri’s

(2011) solution to the puzzle for maize in Kenya holds for chickpea in Ethiopia. To do this, we use a

generalized Roy model in which the returns to adoption that drive adoption decisions are allowed to

vary across individuals. The theoretical model implies an underlying yield function with correlated

random coefficients (CRC). To estimate this model, we expand the Suri (2011) correlated random
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coefficient model to accommodate more time periods.1 This approach allows for households to have

both an absolute advantage in farming (equivalent to a fixed effect) and a comparative advantage

in adoption (a household effect that is correlated with the adoption decision). We find no evidence

that controlling for unobserved heterogeneity in returns resolves the puzzle. In fact, for improved

chickpea in Ethiopia, we find that a farmer’s comparative advantage plays no significant role in the

returns to adoption.

What, then, explains the high adoption rates of this non-yield-increasing technology? We

propose that the adoption literature of the past couple decades, which often viewed the physical

returns to adoption as the main explanatory factor, has been focused on the wrong outcome.

To economists, agricultural technology adoption decisions should be the outcome of individuals’

optimization of expected utility or profit, where returns are a function of land allocation, the

production technology, the costs of inputs, prices of outputs, and the markets in which those prices

are realized and obtainable (Feder et al., 1985). Recent literature that has focused on physical

output, or imputed a shadow value to unmarketed physical output, implicitly assumes that output

can either be stored or sold at a profitable price (Evenson and Gollin, 2003; Smale and Olwande,

2014; Jutzi and Rich, 2016; Asfaw et al., 2016; Emerick et al., 2016; Njeru et al., 2016; Verkaart

et al., 2017). If outputs are instead hard to sell or store, this could explain why adoption of so many

high-yielding varieties remains low.2 Conversely, the marketability of improved chickpea may be

why adoption in Ethiopia has been so high. In the face of limited sales opportunities, due to missing

or poorly functioning markets, the assumed equivalence between yields and economic returns may

have led the literature astray.3

To test this explanation, we explore the economic returns to technology adoption measured in

terms of (i) production costs per hectare and (ii) profits (net revenue from the sale of agricultural

1This is in turn a generalization of the correlated random effects (CRE) model first outlined by Mundlak (1978) and
Chamberlain (1984), as well as a generalization of the now standard fixed effects approach to panel data estimation.

2Burke and Falco (2015) show large price fluctuations in the maize market in East Africa, suggesting that some
barriers exist that prevent farmers from storing their product and selling at more advantageous prices later on in
the season. Potential barriers include limited post-harvest storage capacity (Ricker-Gilbert and Jones, 2015) and
liquidity constraints (Stephens and Barrett, 2011).

3The sole recent study that we are aware of which explores this path is Olwande et al. (2015), which explicitly
looks at the marketing of maize, kale, and dairy in Kenya. They find little evidence of market participation by
households, except in the case of dairy. This suggests that farmers might struggle to convert the higher yields that
improved inputs provide into profitable surplus.
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goods in the market) per hectare. Using standard panel data methods we find that adoption of im-

proved chickpea significantly reduces production costs and significantly increases farm profits. Our

results are robust to estimating returns using Suri’s (2011) correlated random coefficient model.

In fact, we find no evidence that heterogeneity in household comparative advantage explains dif-

ferences in the returns to adoption. Rather, what drives adoption is the ability of households to

lower costs by reallocating crop production out of more costly crops and into improved chickpea.

Compounding these cost savings is the ability of households to increase profits through the sale of

surplus quantities of improved chickpea.

Our estimation results imply that there is little heterogeneity in returns to the adoption of

improved chickpea varieties among smallholder farmers in Ethiopia. This result, suggesting that

returns are relatively homogeneous, not heterogeneous, across households, is likely due to the

considerable economic benefits to be gained from adoption of improved chickpea. Predicted returns,

measured as reductions in cost and increases in profits, are large enough that all groups have positive

returns to adoption, even though there is no yield gain. While the comparative advantage story

proposed by Suri (2011) may explain some of the adoption puzzle in contexts like maize in Kenya,

the importance of measuring returns in economically meaningful ways should not be overlooked.

In regions of the world with missing or poorly functioning markets, the discrepancy between the

shadow value assigned to unmarketed physical production and the actual market value of the

product may be larger than previously assumed. Perhaps the empirical adoption puzzle is due to

focusing on the wrong output measure and that a reorientation towards economic measures such

as costs, revenues, or profits will make the puzzle less common, as is demonstrated for the case of

chickpea in Ethiopia.

This conclusion supports earlier technology adoption work, especially by agricultural economists,

that focuses more explicitly on profits and economic returns. Several of the early contributions to

the literature on technology diffusion highlight the role of profitability, which is defined as a func-

tion of market access (Griliches, 1957; Cochrane, 1958; Kislev and Shchori-Bachrach, 1973; Feder,

1982). As early as Falcon (1970) and Hayami and Herdt (1977), there was recognition of the limits

of yield improving technologies in regions where pricing difficulties were common. The results of
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our empirical analysis should be interpreted as a return to the insights of these earlier studies. Our

conclusions also support the suggestions made by Feder et al. (1985), Binswanger and Townsend

(2000), and Foster and Rosenzweig (2010), namely that research should reorient in a direction that

considers not just the physical but also price effects, and therefore economic returns, as factors that

influence the adoption of agricultural technologies.

The rest of this paper is structured as follows. Section 2 describes the technology and our data

sources. Section 3 outlines the theoretical model used to frame the adoption decision. In Section 4,

we describe the empirical estimation of our theoretical model, including the necessary identifying

assumptions. We then, in Section 5, investigate the impact of adoption on yields and if the inclusion

of household comparative advantage explains adoption. We find no evidence of positive returns to

adoption in terms of yield nor do we find evidence of heterogeneous returns based on comparative

advantage. These results motivate our empirical investigation of the economic returns to adoption

in Section 6. Here we find that adoption reduces production costs and increases farm profits,

though again we find no evidence of a significant role for comparative advantage in explaining

adoption. To better understand why this might be the case, in Section 7 we calculate the returns

to adoption based on each household’s adoption history. We also discuss several mechanisms that

may be driving the profitability of improved chickpea cultivation. Section 8 concludes.

2 Context and Data

2.1 The Technology

As part of the Tropical Legumes II (TLII) development program in Ethiopia, a chickpea improve-

ment program bred new varieties and established seed grower associations for production and

distribution.4 Seed improvement specifically focused on key plant traits including (1) larger seeds,

(2) resistance to Ascochyta blight/Fusarium wilt, (3) drought tolerance, (4) early maturation, and

(5) yield increases (Eshete et al., 2017). The research reports on field trials of the new varieties

4The TLII development program is a joint initiative lead by the International Crops Research Institute for the
Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Center
for Tropical Agriculture (CIAT). More details regarding the chickpea improvement program can be found in Verkaart
et al. (2017) and at http://www.icrisat.org/TropicalLegumesII/.
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suggest positive, but somewhat mixed results along the yield dimension: some reports claim that

yields were two to three times those of landrace varieties (Eshete et al., 2017), but other research

reported more modest yield gains (Daba et al., 2005; Gowda et al., 2011). Farm trials also revealed

that the larger seed size added substantial value to the new variety, since wholesalers who purchase

chickpea for export look specifically for seed size and color. It is therefore reasonable to expect

that farmers may have expected the new variety to constitute an improvement along both of these

dimensions.

Cultivation of local and improved chickpea (and all other legumes, such as fava bean, field

pea, and grass pea) takes place in the post-rainy season using residual moisture. Planting occurs

several weeks before harvest of the main growing season cereal crop, meaning that households are

unable to cultivate two crops in the same 12-month period. Households must therefore decide

between (1) growing cereal during the main rains and leaving the plot fallow through the post-

rainy season and (2) leaving the plot fallow during the main rains and growing chickpea during the

post-rainy season. Thus, chickpea competes with cereal crops for land and purchased inputs, but

the timing implies that competition for labor is minimal. In general, households in Ethiopia—like

most farm households in Sub-Saharan Africa—apply inputs at levels well below those recommended

by authorities.

2.2 Data Sources

We analyze the decision to adoption improved varieties of chickpea in Ethiopia using three rounds

of panel data collected in 2007, 2010, and 2014 for the TLII program. The districts in this study

were purposively selected for their suitable agro-ecology for chickpea production, and represent

major chickpea growing areas in the country (Asfaw et al., 2012).

In each district, eight to ten villages were randomly selected and within these 150-300 house-

holds were randomly selected, allowing for both chickpea and non-chickpea growing farmers to be

interviewed. We limit our analysis to households that were interviewed in all three rounds of the

survey, providing a balanced sample of 600 households. Adopters are defined as households who
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plant an improved chickpea variety in the season surveyed.5 The data include detailed input use

information on a variety of crops, including purchased inputs, hired labor costs, and family labor

time as well as demographic information.6

Overall, adoption rates of improved chickpea increased substantially during the study period.

In 2007, 31 percent of households were recorded as growing improved varieties of chickpea. By

2014, the adoption rate had increased to 80 percent of households. Table 1 displays the transition

history of adoption for households in the data. Of the 600 households in our sample, 25 percent

always cultivate improved varieties of chickpea. A further 55 percent adopt improved varieties

and remain adopters over the study period. Only 12 percent of households never adopt improved

varieties, while nine percent of households disadopt.

Adoption rates were not uniform across space or time. Figure 1 shows heterogeneity in the rate

of adoption from round to round across the three districts in our study area. Adoption rates in

Lume-Ejere were already over 50 percent when the survey began, and by the end of the survey over

90 percent of households had adopted improved varieties. Minjar-Shenkora saw the most dramatic

growth in adoption, increasing from 12 percent of households in 2007 to 84 percent of household

in 2014. Compared to these two districts, adoption rates were relatively lower in Gimbichu, where

the initial adoption rate was 22 percent and increased to 45 percent by the end of the study.

The TLII data is geo-coded at the household level, which allows us to match households to

rainfall data sources using satellite imagery from the Climate Hazards Group InfraRed Precipitation

with Station (CHIRPS) data. CHIRPS is a thirty-year rainfall dataset that spans 50◦S to 50◦N

and incorporates 0.05◦ resolution satellite imagery with in-situ station data to create a gridded

rainfall time series (Funk et al., 2015). The data provide daily rainfall measurements from 1981

through the present. We map households into the 0.05◦ grid cells and calculate the cumulative

rainfall for the rainy season immediately preceding chickpea planting.7 To measure rainfall shocks,

5Misidentification of varietal types is a common problem in many studies of adoption of new seed technology.
However, the improved varieties in this study are predominantly newly introduced Kabuli chickpea types (95% of
improved varieties). Kabuli are easy to distinguish from traditional Desi varieties as they are larger and cream colored
while Desi are smaller and brown. Additionally, the two varieties produce different colored flowers. We are therefore
confident that improved seed is correctly identified.

6See the online appendix for more details about the household level data and relevant descriptive statistics.
7Given that we have household GIS coordinates and 0.05◦ grid cells, many households end up within the same

grid cell (603 households, 111 grid cell observations). However, matching households to grid cells gives us significantly
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we calculate normalized deviations in a single season’s rainfall from average seasonal rainfall over

the previous five years:

(1) R jt =

∣∣∣∣rjt − r̄jσrj

∣∣∣∣ .
Here shocks are calculated for each grid cell j in year t where rjt is the observed amount of rainfall

for the season, r̄j is the average seasonal rainfall for the grid cell over the past five years, and σrj

is the standard deviation of rainfall during the same period.

3 Theoretical Framework

We begin by using a Roy model in which the decision to adopt is the outcome of optimizing

expected profit, where returns are a function of land allocation, the production technology, the

costs of inputs, and prices of outputs (Feder et al., 1985). Focusing on the production technology

underlying the profit function, we assume Cobb-Douglas yield functions of the form:

Y H
it = eβ

H
t

 k∏
j=1

X
γHj
ijt

 eu
H
it ,(2)

Y L
it = eβ

L
t

 k∏
j=1

X
γLj
ijt

 eu
L
it ,(3)

where Y H
it and Y L

it are the yields of improved or hybrid (H) chickpea and local (L) varieties,

respectively. Yields are a function of a sets of inputs in per hectare terms (Xijt) which we allow

to have differential effects on yields, depending on the type of seed (γHj and γLj ). The β’s are

variety-specific aggregate returns to production. Finally, the uHit and uLit terms are variety-specific

compound error terms, in which

uHit = θHi + εHit ,(4)

uLit = θLi + εLit.(5)

Following Carneiro et al. (2003) and Suri (2011), we assume households know θHi and θLi , which

more variation in rainfall than simply using village rainfall measures as there are only 26 villages in the data.
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are farmer-specific productivity effects. We also assume εHit and εLit are unknown to the farmer at

planting and are uncorrelated with each other as well as with the X’s.

Because θHi and θLi are unobserved, we follow Lemieux (1998) in decomposing the productivity

effects as

θHi = bH
(
θHi − θLi

)
+ ζi,(6)

θLi = bL
(
θHi − θLi

)
+ ζi,(7)

where bH =
(
σ2H − σHL

)
/
(
σ2H + σ2L − σHL

)
, bL =

(
σ2L − σHL

)
/
(
σ2H + σ2L − σHL

)
, σ2H ≡ Var

(
θHi
)
,

σ2L ≡ Var
(
θLi
)
, and σHL ≡ Cov

(
θHi , θ

L
i

)
. The ζi is a household’s absolute advantage in agricultural

production and thus does not vary by the variety of chickpea under cultivation.

We then define φ ≡ bH/bL − 1 and rewrite equations (6) and (7) as

θHi = (φ+ 1) θi + ζi,(8)

θLi = θi + ζi,(9)

where θi ≡ bL
(
θHi − θLi

)
. Our equation of interest is (8), which relates the productivity of a

household in growing improved varieties of chickpea (θHi ) to a household’s comparative advantage in

growing improved varieties compared to local varieties (θi) and the household’s absolute advantage

in farming (ζi). The scaling term φ on θi is a measure of how important the comparative advantage

is for growing improved varieties.

Returning to our Cobb-Douglas yield functions, we take logs to linearize the equations and

replace the uHit and uLit terms with their decompositions.

yHit = βHt +X ′itγ
H
j + (φ+ 1) θi + ζi + εHit ,(10)

yLit = βLt +X ′itγ
L
j + θi + ζi + εLit.(11)

Using a generalized yield equation of the form yit = hity
H
it + (1− hit)yLit and substituting in equa-

tions (10) and (11), we can define our empirical specification:

(12) yit = βLt +X ′itγ
L
j +

(
βHt − βLt

)
hit +X ′it

(
γHj − γLj

)
hit + θi + φθihit + ζi + εit,

8



where hit is the decision by household i at time t to adopt improve chickpea and εit ≡ hitεHit + (1−

hit)ε
L
it.

The model defined by equation (12) is a correlated random coefficient (CRC) model because the

coefficient φθi on the adoption term depends on the unobserved θi and will generally be correlated

with the adoption decision. This is a generalization of the household fixed effects model (Suri,

2006). Note that a fixed effects model is equivalent to restricting φ = 0 so that the household

unobservable θi has the same effect on yields regardless of the technology adopted. Intuitively,

this assumes that the unobserved heterogeneity that makes the adoption decision endogenous is

independent of a household’s ability to use the technology. The CRC model relaxes this assumption

and allows the unobserved effect to vary by chickpea variety.

In our estimation procedure, which is described in the next section, we estimate the distribution

of θi, which is a measure of a household’s productivity in improved varieties relative to local varieties,

and φ, a measure of the importance of comparative advantage. The φ term describes the sorting

of households into improved varieties. For φ > 0, the sorting process leads to greater inequality

in yields as households with relatively high values for θi select into the new technology and see

increasing gains from their decision to adopt. Alternatively, for φ < 0, the sorting process leads to

less inequality as adoption of improved varieties will still be optimal for households with relatively

small values for θi. When φ = 0, a household’s comparative advantage in cultivating improved

varieties relative to local varieties is not important in the decision to adoption the improved varieties.

4 Empirical Approach

4.1 Identification of the Yield Function

Identification of equation (12) requires two assumptions. The first is mean independence of the

composite error and unobserved comparative advantage terms and the exogenous regressors. This

amounts to

(13) E [ζi + εit|θi;hi1, ..., hiT ;Xi1, ..., XiT ] .
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This assumption is not particularly strong, given that by differencing out (θHi −θLi ), we have ensured

ζi is independent of θi (Heckman and Honore, 1990; Suri, 2011). The second assumption is strict

exogeneity of the idiosyncratic error term, which implies that transitory shocks do not affect the

household’s decision to adopt. We divide potential shocks into two categories - those that occur

after the adoption decision and those that occur prior to the adoption decision.

The timing of the household’s decision is as follows. Prior to the rainy season, a household

decides to either plant cereals before the rains or skip cereals and potentially plant legumes in the

post-rainy season. If the household chooses to skip cereals, it observes rainfall and then decides

to either plant legumes or leave the plot fallow for the entire year.8 If the household chooses to

plant legumes, it then prepares the land and chooses a seed technology based on forward-looking

expectations regarding availability of inputs (including budget constraints) and prospects for the

sale of outputs. Having decided upon a seed technology, the household plants and then throughout

the growing season applies labor and complementary inputs as non-rainfall shocks are realized.

Finally, the household harvests and markets its production.

We are able to control for many of the shocks that occur prior to the adoption decision and affect

both the decision to adopt and yields. We directly control for these potential shocks by including

a variety of weather and household demographic variables. To control for weather shocks, we use

seasonal rainfall as well as deviations from average rainfall. As Suri (2011) points out, the most

likely type of non-weather shock is sudden sickness or death in the family.9 We include variables

to capture changes to the head of household, the household structure, and the household’s access

to off-farm income on the assumption that a death would impact any or all of these terms.

What remains are transitory shocks that occur after the adoption decision is made. We control

8As an anonymous reviewer pointed out, one may be concerned that the introduction of improved chickpea creates
additional land pressure, reducing the incidence of fallowing and thereby reducing land quality (and by extension,
yields) for those farmers who adopt the new technology. Three factors mitigate this concern. First, the crop cycle in
Ethiopia means that the household decision to cultivate chickpea does not create additional pressure on land use (i.e.,
growing two crops on the same plot in the same year). Second, as Josephson et al. (2014) note, households in Ethiopia
have by and large replaced fallowing with multi-crop practices. To the extent that the evidence in Josephson et al.
(2014) is representative of a transition that has already occurred in Ethiopia, the introduction of improved chickpea
does not introduce any new dynamics to soil management. Third, chickpeas fix nitrogen in the soil making it unclear
that fallowing is more nutrient enriching than cultivating chickpeas.

9Note that if household members are chronically sick or if the death is expected, due to age or existing infection,
those would not be transitory and are therefore controlled for by our absolute advantage term.
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for input use, as households will adjust their use of purchased inputs and the application of labor

as seasonal shocks are realized. As Panel A in Table A1 of Appendix A reveals, input use varies

considerably over time. We interpret this as households adjusting their input use to the realization

of transitory shocks after the adoption decision has been made. Given that we include input

values in the regressions, we believe the possible presence of post-adoption transitory shocks is well

controlled for.

By including a rich set of control variables, we have endeavored to reduce the potential for

transitory shocks to affect both the adoption decision and outcomes. However, including controls

still leaves the possibility that some unobserved transitory shock remains. Such shocks, if they exist,

most likely simultaneously reduce access to improved varieties and negatively impact outcomes,

meaning the returns to improved varieties may be biased upward. Our results should be interpreted

in the light of this limitation.

4.2 Estimating the CRC Model

To estimate equation (12) we use Suri’s (2011) generalization of the correlated random effects (CRE)

model pioneered by Chamberlain (1984). We return to Suri (2006) in order to expand the method

to accommodate three years of data. For ease of exposition, we outline the estimation procedure

for a three-period model without covariates. Assume the data generating process is given by:

(14) yit = δ + βhit + θi + φθihit + ξit,

where ξit ≡ ζi + εit, β ≡ βHt − βLt , and all other terms are as previously defined. Note that the

problem in estimating this equation comes from the fact that both hit and θi are present in multiple

places in the equation. As with the Chamberlain (1984) CRE model, we can replace the θi’s with

their linear projection on the history of the household’s adoption behavior:

(15) θi = λ0 + λ1hi1 + λ2hi2 + λ3hi3 + λ4hi1hi2 + λ5hi1hi3 + λ6hi2hi3 + λ7hi1hi2hi3 + νi

Note that we must include the history of interaction because while the projection error νi is un-

correlated with each individual history by construction it is not necessarily uncorrelated with the

11



product of the histories.

Substituting equation (15) into equation (14) yields the following:

yit = δ + βhit + λ0 + λ1hi1 + λ2hi2 + λ3hi3 + λ4hi1hi2 + λ5hi1hi3 + λ6hi2hi3 + λ7hi1hi2hi3 + νi

+ φ(λ0 + λ1hi1 + λ2hi2 + λ3hi3 + λ4hi1hi2 + λ5hi1hi3 + λ6hi2hi3 + λ7hi1hi2hi3 + νi)hit + τi + uit.

The structure of the equation becomes easier to visualize when we write out each time period’s

yield function:

yi1 = (δ + λ0) + [β + φλ0 + λ1(1 + φ)]hi1 + λ2hi2 + λ3hi3 + [φλ2 + λ4(1 + φ)]hi1hi2

+ [φλ3 + λ5(1 + φ)]hi1hi3 + λ6hi2hi3 + [φλ6 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi1 + ui1)(16a)

yi2 = (δ + λ0) + λ1hi1 + [β + φλ0 + λ2(1 + φ)]hi2 + λ3hi3 + [φλ1 + λ4(1 + φ)]hi1hi2

+ λ5hi1hi3 + [φλ3 + λ6(1 + φ)]hi2hi3 + [φλ5 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi2 + ui2)(16b)

yi3 = (δ + λ0) + λ1hi1 + λ2hi2 + [β + φλ0 + λ3(1 + φ)]hi3 + [φλ1 + λ5(1 + φ)]hi1hi3

+ λ4hi1hi2 + [φλ2 + λ6(1 + φ)]hi2hi3 + [φλ4 + λ7(1 + φ)]hi1hi2hi3 + (νi + φνihi3 + ui3)(16c)

These are the structural yield equations for each period. From these we can estimate the following

three reduced form equations:

yi1 = δ1 + γ1hi1 + γ2hi2 + γ3hi3 + γ4hi1hi2 + γ5hi1hi3 + γ6hi2hi3 + γ7hi1hi2hi3 + ni1(17a)

yi2 = δ2 + γ8hi1 + γ9hi2 + γ10hi3 + γ11hi1hi2 + γ12hi1hi3 + γ13hi2hi3 + γ14hi1hi2hi3 + ni2(17b)

yi3 = δ3 + γ15hi1 + γ16hi2 + γ17hi3 + γ18hi1hi2 + γ19hi1hi3 + γ20hi2hi3 + γ21hi1hi2hi3 + ni3(17c)

These equations give 21 reduced form coefficients (γ1− γ21) from which we can estimate ten struc-

tural parameters (β, φ, λ0−λ7). Note that if we normalize the θ’s so that
∑
θi = 0, we can eliminate

λ0 and only need to estimate nine structural parameters.10

The restrictions necessary to identify the structural parameters are as follows:

We estimate equations (17a)-(17c) as seemingly unrelated regressions and preserve the 21 re-

10Normalizing θi results in λ0 = −h̄i1λ1 − h̄i2λ2 − h̄i3λ3 − h̄i1h̄i2λ4 − h̄i1h̄i3λ5 − h̄i2h̄i3λ6 − h̄i1h̄i2h̄i3λ7, where
the bars are the averages of the adoption decision over time. Note that by the notation h̄i1h̄i2 we do not mean the
product of each mean but rather than mean of the interaction term.
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γ1 = [β + φλ0 + λ1(1 + φ)] γ8 = λ1 γ15 = λ1
γ2 = λ2 γ9 = [β + φλ0 + λ2(1 + φ)] γ16 = λ2
γ3 = λ3 γ10 = λ3 γ17 = [β + φλ0 + λ3(1 + φ)]
γ4 = [φλ2 + λ4(1 + φ)] γ11 = [φλ1 + λ4(1 + φ)] γ18 = λ4
γ5 = [φλ3 + λ5(1 + φ)] γ12 = λ5 γ19 = [φλ1 + λ5(1 + φ)]
γ6 = λ6 γ13 = [φλ3 + λ6(1 + φ)] γ20 = [φλ2 + λ6(1 + φ)]
γ7 = [φλ6 + λ7(1 + φ)] γ14 = [φλ5 + λ7(1 + φ)] γ21 = [φλ4 + λ7(1 + φ)]

duced form parameters in a vector π[21×1] and the variance-covariance matrices in a large symmetric

block matrix V[21×21]. The restrictions on the γ’s can be expressed as π = Hδ where H[21×9] em-

bodies the 21 restrictions on γ and δ[9×1] is a vector of our nine structural parameters.

We then use the optimal minimum distance (OMD) function to estimate the structural param-

eters. What remains is to calculate the variance-covariance matrix of the structural parameter

estimates so we can compute the correct standard errors. This involves taking derivatives of each

element in the product Hδ with respect to each of the structural parameters. This gives us 63

derivatives in the construction of the variance-covariance matrix.11 We automate the estimation

procedure using a new Stata package described in Barriga Cabanillas et al. (2018).

5 Returns for Yields

5.1 Descriptive Evidence

At first glance, descriptive evidence of the impact of improved chickpea on yields appears to be

unambiguously positive. Restricting our sample to households who cultivate chickpea, Panel A in

Table 2 shows that in all three years yields from improved varieties are significantly higher than

yields from local varieties.12 In online Appendix A, we calculate the marginal distribution of yields

by adoption status. Returns are significantly higher for those who have adopted, and the yield

distribution for adopters first-order stochastically dominates the distribution for non-adopters.

11Note that there are more derivatives than restrictions because of the presence of λ0 which is a function of all of
the λi terms.

12For each cultivation pair we first test for normality of the data using the Shapiro-Wilk test. In every case we
reject the null that the data is normally distributed. Because of this, we rely on the Mann-Whitney (MW) test
instead of the standard t-test to determine if differences exist within crops across cultivation practices. Unlike the
t-test, the MW test does not require the assumption of a normal distribution. In the context of summary statistics
we also prefer the MW test to the Kolmogorov-Smirnov (KS) test, since the MW test is a test of location while the
KS test is a test for shape. Results using the KS test are equivalent to those obtained from the MW test.
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One obvious potential reason why improved chickpea might be associated with higher yields is

if farmers increase the intensity of agricultural input application. Compared to traditional local

varieties, the cultivation of improved varieties is associated with higher rates of fertilizer, chemical

pesticide, and herbicide application. Similarly, cultivation of improved varieties is associated with

higher costs for hired labor and for transportation of goods to market. The only input where we

consistently see no difference in use across varieties is family labor. This may be due to binding fam-

ily labor constraints, which force households to substitute hired labor or labor-saving technologies,

such as chemical herbicide, for scarce family labor.

Given the prevalence of statistically significant differences in input use, we cannot tell if the

improved varieties result in higher yields or if households use inputs more intensively when growing

improved varieties and this is what results in the higher yields. To address this issue, we first turn

to a multivariate analysis employing Ordinary Least Squares (OLS) and fixed effects (FE).

5.2 OLS and FE Evidence

Our theoretical framework sets up the model in terms of a Cobb-Douglas yield function so we begin

by estimating the generalized yield function with log of chickpea yield as the dependent variable.13

To start, we test to see if yield response curves to inputs differ by chickpea variety by estimating

yield using regressions in which we interact inputs with the adoption indicator (see Table B1 in

the online appendix).14 The yield response is similar for both chickpea types; on the basis of this

result, we believe that it is reasonable to pool all the seed varieties together in the yield function.

Results from OLS and fixed effects versions of this generalized yield function, with various sets of

controls, are presented in columns (1)-(4) of Table 3.

In our OLS regression, the returns to adoption are 26 percent, which is slightly larger than

the mean difference in yields presented in Table 2. The inclusion of measured inputs reduces

the returns to adoption, but the returns remain positive and significant. These results provide

suggestive evidence that differences in input use do not fully explain the higher observed yields for

13Given the prevalence of zero values in both input and output data, we use the inverse hyperbolic sine transfor-
mation to convert levels to logarithmic values.

14This also allows us to conduct a number of other tests regarding the potential endogeneity of some inputs as well
as regarding the separability of labor. These tests are discussed in online appendices B and C.
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improved chickpea.

However, when we include household fixed effects, returns to adoption are no longer significantly

different from zero. While higher yields on improved chickpea clearly exist in our data, differences in

mean outcomes can be explained by including either observables or by controlling for time-invariant

unobservables. Once we control for input use decisions, regional environmental differences, or time-

invariant differences across households (i.e., the absolute advantage, ζi), improved chickpea yields

are indistinguishable from local chickpea yields. The main caveat of our interpretation of the fixed

effects results is that estimation of the equations relies on a fairly restrictive assumption regarding

the adoption process. As outlined in Section 3, fixed effects is a special case of the CRC model

in that it assumes the comparative advantage term is equal to zero. This assumption amounts

to requiring that a household’s experience or history of adoption has no effect on the outcome of

interest, or that the effect is the same in every time period. Alternatively, if households are fully

aware, or completely ignorant, of the potential gains from adoption, or behave myopically, it may

be the case that their history of adoption has a time-invariant impact on their returns. Given that

nearly 40 percent of the households in the sample do not change their adoption status, such an

assumption may be reasonable.

5.3 CRE and CRC Evidence

To test for the possibility that adoption history has either no effect or a time-invariant effect on

returns, we next estimate a correlated random effects (CRE) model (see Table 4). To do this,

we replace the time-invariant household fixed effect with its projection on the complete household

adoption history. Coefficients on the returns to adoption are similar in the CRE model and in the

FE model.15 Returns on yields are again not significant, regardless of whether or not we include

measured inputs.

Across the fixed effects and CRE models a robust set of outcomes show, controlling for observ-

ables and unobservables, that improved chickpea varieties have no statistically significant impact

15While the CRE and fixed effects estimates of returns are similar, the χ2 values on the overidentification tests
allow us to reject the fixed effects model in all cases. However, the overidentification test is an omnibus test, meaning
that it has low power to reject any specific alternative. Thus, our ability to reject the fixed effects model is not
particularly surprising or informative.
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on yields. This result brings us back to our primary question—if improved chickpea varieties are

not yield improving, why have so many households adopted them? One explanation is that a house-

hold’s unobserved comparative advantage, left uncontrolled for in much of the existing adoption

literature, is biasing our results. A test of whether or not such correlation exists can be constructed

using the CRC model. Here we not only estimate the returns to adoption (β) but the degree of

selection due to heterogeneity in households’ comparative advantage (φ). A t-test on the φ term is

a test of the validity of the fixed effects assumption that unobserved heterogeneity is time-invariant

and uncorrelated with the decision to adopt or the experience of adoption.

Table 5 reports the OMD estimates of the structural parameters from the CRC model.16 Returns

to adoption for yields are again not significant, having controlled for observables and unobservables.

Additionally, the estimates of φ are not statistically different from zero. If we believe that φ = 0, this

implies that selection into improved varieties is not based on any sort of unobserved comparative

advantage. Intuitively, heterogeneity exists between households in that some households are better

farmers than other households, regardless of crop type. This absolute advantage in farming is

completely controlled for by the fixed effects model. What the CRC results show is that there is

no detectable comparative advantage additional to a household’s absolute advantage at farming

that makes some households better at cultivating improved varieties compared to local varieties

and results in their selecting into improved varieties.17

To summarize our results thus far, our FE and CRE estimates provide no evidence that the

adoption of improved chickpea results in higher yields when compared to local varieties. This

presents us with an empirical puzzle that is the converse of the one that motivates Suri (2011):

high adoption rates of a technology that does not increase average yields. Estimating the CRC

model, we find no evidence that Suri’s (2011) explanation of the puzzle for maize in Kenya holds

in the context of chickpea in Ethiopia.18 The high adoption rate is not driven by selection based

16Estimates of the reduced form coefficients are presented in Appendix E.
17In Appendix D we estimate two-year pairwise versions of the CRC model to determine if our results are affected

by the averaging over three years. Though coefficients are less precisely estimated, the results confirm those in the
three-year model.

18We also estimate models with chickpea production value as the dependent variable. In the adoption literature,
this is a common way to measure “economic” impact. However, it requires the assumption that, if a household
wanted to, all production could be sold for that imputed value. Our results show that improved chickpea adoption
has no significant impact on chickpea production value. Results of these alternative specifications are available from
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on comparative advantage. Thus, the question remains: why are so many households in Ethiopia

adopting improved chickpea in the absence of yield gains?

6 Returns for Costs and Profits

6.1 Descriptive Evidence

We now turn from a focus on the physical returns to improved chickpea adoption to the economic

returns. We measure economic returns as per-hectare costs of production and as per-hectare profits

from the sale of agricultural production. These specifications directly embed our yield function,

with the Cobb-Douglas framework underpinning the cost or profit function. Households, when

making their technology adoption decisions, are minimizing over cost functions or maximizing over

profit functions for which the Cobb-Douglas technology is an input. We consider whole farm

production as it allows us to capture reallocation of resources across crops and better mirrors

household economic decision-making, which is ultimately concerned with household income and

not income from a single crop.19

Similar to the descriptive evidence regarding production, we find significant differences in pro-

duction costs between those who adopt improved chickpea and those who do not (Panel B in

Table 2). At first glance, we do not find strong evidence that adoption of improved chickpea lowers

production costs, which is unsurprising, since improved chickpea cultivation is more resource inten-

sive. In the first year of the survey, those who cultivate improved chickpea have significantly higher

production costs. However, over the subsequent rounds of the survey, these costs fall, suggesting

a learning process. The primary sources of the differences in production costs are seed, chemicals,

and transportation. Despite these categories contributing to higher costs of on-farm production,

the net result is that those who cultivate improved chickpea are significantly more profitable than

those who do not.20 The descriptive evidence suggests that while improved chickpea production can

the authors upon request.
19One may be concerned that the subsequent analysis is not directly comparable to our analysis of yields, since our

sample is larger. To ensure that our results regarding costs and profits are not driven exclusively by the inclusion
of households that never cultivate chickpea of any type, we also estimate cost and profit functions of just chickpea
producers. We find that our fixed effects and CRE results do not change when we limit ourselves to the smaller
sample. Our CRC results for costs and profits share the same sign but are not significant at conventional levels.

20In online Appendix A, we separately calculate the marginal distributions of costs and profits by adoption status.
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be more costly, these costs result in higher yields and that those yields can be profitably marketed.

6.2 OLS and FE Evidence

Results from OLS and fixed effects versions of the cost and profit regressions with various sets of

controls are presented in columns (5)-(12) of Table 3. Recall that only our OLS estimates of the

yield function resulted in positive returns to the adoption of improved chickpea. Comparably, the

returns in terms of costs tend to be negative and significant and the impact on profit is always

positive and significant. Households who adopt the technology experience around a five percent

reduction in per hectare production costs, which helps contribute to around a 25 percent increase in

profits per hectare. We take this as evidence that households are not adopting improved chickpea

for the technology’s potential yield gains. Rather, households adopt improved chickpea for the

potentially significant returns gained as measured by lower costs and higher profits. This suggests

the need to consider economic returns, not purely physical returns or some imputed value to physical

returns, when seeking to understand the technology adoption decision in the context of developing

country agriculture.

6.3 CRE and CRC Evidence

While our OLS and fixed effects results are encouraging, they may be biased if adoption is correlated

with a household’s comparative advantage in cultivating improved varieties of chickpea. We again

estimate the CRE model, which returns values very similar to our fixed effects estimates (see

Table 4). Returns continue to remain significant when we estimate the CRC model (see Table 5).21

The results from our cost and profit regressions tell a very different story than do our results

from the estimation of the yield function. We find robust evidence that those who adopt improved

chickpea had lower production costs and higher profits, even without seeing significant increases

in yields. Despite this, we again find no evidence of selection into improved varieties based on

a household’s comparative advantage. There could be several explanations for this null result.22

Figure A2 shows that there is not much difference in the distribution of costs across adopters and non-adopters.
Figure A3 shows, the distribution of profits from adoption first-order dominates those from non-adoption.

21Estimates of the reduced form coefficients are presented in Appendix E.
22In addition to these explanations, we explore, in Appendix B and C, the potential for endogeneity in our ex-
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First, our set of control variables may have completely controlled for any comparative advantage

that might remain unobservable if we had fewer controls. This seems unlikely since our results do

not differ dramatically when we exclude/include covariates from our model. Second, our estimates

may be too imprecise, meaning that a comparative advantage exists but we lack the power to

detect it. Given that the standard errors on the estimates of φ tend to be larger than the standard

errors on the other structural parameters, we cannot rule out this explanation. Third, the skill and

knowledge to cultivate improved varieties may be extremely similar to that required to cultivate

local varieties. If this is the case, no special advantage is required to shift a household from non-

adoption to adoption. Given the relative simplicity of cultivating chickpeas, this explanation is

plausible. Finally, it may be that the economic returns to improved varieties are so consistently

large that it is rational for every household to adopt. Given the high adoption rates and that we

consistently find that adoption increases profits in the range between 23 and 28 percent, we believe

this explanation is the most likely. Additionally, this explanation does not preclude the existence

of selection based on comparative advantage. Rather, what it says is that during this stage of the

adoption cycle, the returns gained by all households from adoption greatly exceed any comparative

advantage that some households might gain. If we were earlier or later in the adoption cycle, there

may be more sorting based on a household’s comparative advantage.

7 Discussion

7.1 Predicted Returns

To better understand why comparative advantage does not play a significant role in the adoption of

improved chickpea, we predict the θ̂ term for a given adoption history. We can recover the θ̂ using

equation (15) and our structural OMD estimates. Given that each history is binary, and given that

we observe at least one household in each history, the projection is fully saturated (see Table 1).

This procedure results in eight mass points for the θ̂’s.

Once we have recovered the θ̂’s, we can predict the average returns for a given adoption history.

planatory variables as well as the issue of separability of labor.

19



This involves calculating β̂+ φ̂θ̂i, where β̂ is the average return to improved varieties and each i is a

specific adoption history. The results can be viewed as the counterfactual returns for non-adopting

households using weighted averages of all possible returns. In Figures 2- 4, we graph the returns

to improved chickpea adoption for each adoption history.

Figure 2 displays returns to adoption in terms of chickpea yields. The predicted values align

with what we would a priori expect in the adoption of new technologies: there are differences in

returns based on adoption history. The households who adopt have higher returns to the technology,

in terms of yields, than those who do not adopt or disadopt. However, given the evidence from

our regressions, these differences are not statistically significant. We conclude that households who

choose to adopt see positive but insignificant gains from adoption while farmers who refrain from

adoption or who disadopt may do so because their gains from adoption would be slightly negative.

Figures 3 and 4 display returns to adoption in terms of production costs and on-farm profits per

hectare. Here we find consistently negative (positive) returns regardless of adoption history. Unlike

the results from the yield regressions, we find reductions in costs for all groups. We interpret this

result as evidence that while gains from adoption in terms of yields differ slightly based on who chose

not to adopt or disadopted, the reductions in production costs are significant for all groups. This

translates into positive returns on profit regardless of a household’s adoption history. We believe

that the returns on profit, which are around 25 percent, are so large that the absolute advantage

presented by improved varieties dwarfs any comparative advantage that some households might

possess. We conclude that comparative advantage might be an important factor in determining

adoption of technologies with lower average returns, such as maize and fertilizer in Suri (2011),

where average returns were nine percent. However, for technologies with large potential returns,

such as the case of improved chickpea in Ethiopia, individual comparative advantage may not

matter when measured against the absolute advantage all households would gain from adoption.

7.2 Potential Mechanisms

If households that adopt improved chickpea are not getting higher yields, then what is driving

the large gains in profitability? We have shown that lower production costs explain some of this
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difference but where are these cost savings coming from since improved chickpea cultivation is

more input intensive? In this final section we explore two potential mechanisms that may be

driving the increase in profits. The first is changes in cropping patterns and the second is increased

marketability of crop production.

To understand how these mechanisms change in relation to adoption of improved chickpea, we

construct two different “treatment” and “control” groups. In the first, we compare households

who cultivate improved chickpea in all three rounds of the data with those who cultivate improved

chickpea in round one but disadopt by the final round. In the second, we compare households who

never adopt with those who adopt the technology in later rounds. The intuition behind comparing

these adoption types is that in the first year, 2007, always adopters and future disadopters should

have outcomes similar to each other as should never adopters and future adopters. By the last

round, 2014, when adoption histories are different, these outcomes should have diverged.

To test the hypothesis that improved chickpea adoption translates into higher profits through

the reallocation of crop production out of more costly or less profitable crops and into improved

chickpea, we construct standard measures of crop diversity at the household level. Our data contains

detailed information on the production of ten different crops. We calculate Herfindahl and Shannon

indices using the share of land allocated to each crop.23 When comparing always adopters to future

disadopters as well as never adopters to future adopters in 2007 we find no significant difference in

crop diversity (see Table 6). By 2014, though, always adopters and future adopters have become

more specialized when compared to their relevant counterfactual group. Always adopters and future

disadopters, both of whom cultivate improved chickpea in 2007 have similar diversity indices while

in 2014, after future disadopters have stopped cultivating improved chickpea, future disadopters

are significantly more diversified. In a similar way, after future adopters have started to cultivate

improved chickpea they are significantly more specialized than their counterfactual never-adopters.

Looking across the same two groups, we find that these changes in diversity are associated with

increases in the share of farmland allocated to chickpea production. We take this as evidence that

23The Herfindahl Index is calculated as H =
∑R

i=1 p
2
i , where R is the total number of crop types and pi is the

proportion of cultivated area for each crop i. The Shannon Index is calculated as S = −
∑R

i=1 pi ln(pi), where all
terms are as previously defined.
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cost savings occur as households shift production out of high cost crops into relatively less costly

improved chickpea.

To test the hypothesis that improved chickpea adoption translates into higher profits through

increased sales of chickpea surpluses, we examine differences in agricultural sales income, share

of chickpea sold, and share of chickpea in sales income. Starting in 2007 we find no differences

in the baseline values of our two groups, with the exception that future adopters have higher

agricultural sales income than never adopters. This suggests that our constructed counterfactual

groups for always adopters and never adopters are broadly similar. When we look at sales outcomes

in 2014, we find that households who disadopt now have significantly less income from agricultural

sales than those who continue to cultivate improved chickpea. Additionally, the proportion of

chickpea production that is sold into the market is significantly higher for those who continue

to cultivate improved varieties. Those who disadopt sell less chickpea compared to their always-

adopting counterparts as well as to their past selves who cultivated improved varieties in 2007. A

similar pattern exists when we compare never adopters to future adopters. Though similar to each

other in 2007, by 2014 those who adopt have higher agricultural sales income, sell more of their

chickpea crop, and have a larger proportion of their sales income from chickpea.

Verkaart et al. (2018) provide a detailed discussion on the cropping practices of households

in Ethiopia using the same data. According to their calculations, the increase in cultivation of

improved chickpea comes primarily at the expense of local chickpea, other legumes, and maize.

Throughout the study period, there was no significant change to the number of households growing

teff and wheat, nor to the area allocated to these two crops. This suggests that households have

replaced traditional legumes with improved chickpea or have given up maize cultivation during

the main growing season and replaced it with post-rainy season chickpea. Verkaart et al. (2018)

also calculate total production costs by crop. They find that the production costs of improved

chickpea are about half that for maize. They also find that the costs of production for all legumes

(local and improved chickpea, fava beans, lentils, grass pea, and field pea) tend to be similar.

Where differences appear is in the share of households selling improved chickpea and the sale price

commanded by improved chickpea. It appears that as households move away from maize and into
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improved chickpea, they experience cost savings. At the same time, as households move away from

traditional legumes and into improved chickpea they are able to take advantage of the market.

Summarizing these results, we find that households who adopt improved chickpea reallocate

production from costly crops, like maize, into relatively less costly improved chickpea. These cost

savings are magnified by a household’s ability to market their surplus chickpea crop, capturing

profits that are unavailable when households cultivate local chickpea or other staple crops. In light

of these large economic gains, the high adoption rates of improved chickpea make intuitive sense.

An empirical puzzle only exists when we measure returns using the wrong metric, which in this

case appears to be yields.

8 Conclusions and Policy Implications

Recent studies of agricultural technology adoption have focused on the physical returns (yields)

or on the imputed value for these physical returns. This has created an empirical puzzle in which

households choose not to adopt despite high average yields. Numerous potential solutions have

been proposed, each of which contains elements to commend itself to the policymaker.

We propose a return to an older, alternative solution focused on economic returns to new

agricultural technologies. We study a technology that appears to have no impact on yields yet

has been widely adopted in Ethiopia. Using three years of panel data and a correlated random

coefficient model, we calculate the returns to improved chickpea adoption in terms of yields, costs,

and profits. Across a number of specifications, we find no evidence that adoption results in higher

yields. This empirical puzzle—high adoption despite low to zero returns—disappears, however,

once we measure returns in economic terms. We find that adoption results in significant reductions

in total farm production costs and a significant increase in profits. Somewhat surprisingly, given its

popularity as a potential solution since Suri (2011), we find no evidence of comparative advantage

or heterogeneity in returns based on unobservables. Given that returns on profits are around 25

percent, we conclude that any comparative advantage some farmers may possess is dominated by

the clear absolute advantage available to all farmers from adoption. This explains the high adoption

rates (up to 80 percent) of improved chickpea.
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To understand the potential mechanisms that allow households to convert a non-yield-increasing

technology into a cost-reducing and profit-enhancing technology, we conduct a simple counterfac-

tual analysis. While this analysis relies on non-random “treatment” and “control” groups, the

results present a consistent picture regarding the potential mechanisms that have made adoption of

improved chickpea varieties so popular. Despite not gaining higher yields relative to local varieties,

those who adopt find adoption to be highly profitable. Adopters are able to sell more of their

chickpea crop, gain more income from the increased sales, and reallocate cropland to specialize in

improved chickpea production.

Our results imply that the divergent adoption rates across contexts may be explained by the

quality of the markets for the output. Persistent low adoption rates of improved maize varieties

that have been documented across Eastern Africa may be the result of a lack of markets where

farmers can sell their surpluses. Without complementary economic gains, which require markets for

surpluses, increased physical gains will likely be unattractive to potential adopters. This suggests

that focusing policy solely on the yield aspect of genetic gains may be misguided. Examining traits

other than yields, and improving households’ ability to realize higher yields (perhaps through

complementary investments that improve value chains and market access) should accompany yield-

increasing breeding programs.

The context of our study is an extreme example of the extent to which markets matter. Despite

improved chickpea providing no statistically significant gains in yields, adoption of the technology

has been extremely high. This adoption success has been the result of markets for the improved

varieties in which farmers can sell their surpluses and reap economic benefits unavailable from

growing and marketing less desirable traditional varieties. Policy and future research should reorient

in a direction that considers both the physical and the economic returns as factors that influence

the adoption of agricultural technologies.
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Table 1: Transitions across local/improved varieties for the sample period

Transition of adoption Fraction of sample (%)

2007 2010 2014 (N = 600)

Always adopter Y Y Y 24.50
Early adopter N Y Y 30.67
Late adopter N N Y 20.00
Mixed adopter Y N Y 4.00
Mixed disadopter N Y N 6.33
Late disadopter Y Y N 1.50
Early disadopter Y N N 1.17
Never adopter N N N 11.83

Note: The table shows all possible adoption histories for the three years in our
panel. In the middle three columns, the letters represent adoption status, where
“Y” represents the adoption of improved chickpea varieties while “N” represents
non-adoption or disadoption.
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Table 2: Production, costs and returns of improved and local chickpea

2007 2010 2014

Local Improved MW-test Local Improved MW-test Local Improved MW-test

Panel A: Chickpea production
Chickpea yield (kg/ha) 1,882 2,210 *** 1,858 2,274 *** 1,862 2,432 ***

(1,002) (1,177) (1,086) (1,124) (784.8) (1,098)
Chickpea area (ha) 0.435 0.755 *** 0.337 0.654 *** 0.367 0.593 ***

(0.385) (0.567) (0.253) (0.465) (0.292) (0.415)
Chickpea seed (kg/ha) 135.3 206.0 *** 186.2 187.6 202.2 208.5

(83.22) (225.3) (97.98) (73.86) (92.61) (111.0)
Fertilizer (kg/ha) 3.420 24.14 *** 13.20 8.534 9.697 20.17 **

(31.42) (68.39) (63.41) (56.19) (71.91) (136.5)
Chemical cost (USD/ha) 17.11 18.95 13.62 31.23 *** 13.44 58.75 ***

(31.80) (47.68) (44.41) (41.95) (34.59) (81.33)
Family labor (days/ha) 73.07 77.69 91.02 72.75 73.31 74.74

(40.18) (48.11) (132.2) (34.78) (48.20) (47.20)
Hired labor cost (USD/ha) 16.98 52.45 *** 23.55 34.21 *** 53.20 52.55

(65.29) (88.11) (73.65) (75.73) (111.7) (98.36)
Transportation cost (USD/ha) 2.095 8.995 *** 1.392 5.601 *** 1.877 2.123 **

(8.566) (32.04) (5.045) (15.75) (10.56) (8.176)
Chickpea price (USD/kg) 1.449 1.961 *** 0.972 1.751 *** 0.763 0.955 ***

(0.336) (0.671) (0.197) (0.432) (0.156) (0.140)

Observations 207 187 106 378 55 475

Panel B: Whole farm production
Production costs (USD/ha) 555.9 680.2 *** 575.9 546.3 633.0 540.2 ***

(301.2) (268.3) (258.4) (221.9) (273.9) (210.8)
Cultivated area (ha) 2.087 2.891 *** 2.027 2.814 *** 1.966 2.322 ***

(1.080) (1.338) (1.096) (1.504) (1.706) (1.274)
Seed cost (USD/ha) 185.1 254.4 *** 173.3 195.4 *** 154.7 141.1 **

(97.29) (91.93) (90.71) (72.41) (67.89) (70.47)
Fertilizer cost (USD/ha) 304.8 313.3 336.7 272.6 *** 393.7 297.6 ***

(197.1) (170.1) (160.6) (142.0) (178.8) (130.7)
Chemical cost (USD/ha) 14.21 13.72 *** 6.346 13.54 *** 15.93 26.87 ***

(86.59) (30.08) (15.43) (14.67) (40.67) (31.89)
Family labor (days/ha) 70.15 72.19 79.12 69.32 *** 75.35 70.23

(28.43) (28.93) (34.24) (26.82) (39.53) (31.35)
Hired labor cost (USD/ha) 50.01 93.34 *** 58.01 61.48 ** 68.11 73.51

(63.83) (89.08) (97.76) (66.91) (103.6) (86.96)
Transportation cost (USD/ha) 1.717 5.502 *** 1.605 3.218 *** 0.569 1.098 **

(7.832) (12.54) (8.158) (7.393) (2.507) (3.820)
On-farm profit (USD/ha) 2,058 2,475 *** 1,784 2,242 *** 1,434 1,749 ***

(893.0) (1,122) (906.6) (1,154) (797.4) (722.1)

Observations 413 187 222 378 125 475

Note: Columns in table display means of production data by year and by type of chickpea cultivated with standard deviations in parentheses. All monetary units are
given in real terms. Columns headed Local are output and inputs used in cultivation of local varieties of chickpea while columns headed Improved are output and
inputs used in cultivation of improved varieties. The final column for each year presents the results of Mann-Whitney two-sample tests for differences in distribution.
Results are similar if a Kolmogorov-Smirnov test is used. Significance of MW-tests are reported as ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 3: Basic OLS and household FE specifications

Ln chickpea yield (kg/ha) Ln production cost (USD/ha) Ln on-farm profit (USD/ha)

OLS OLS FE FE OLS OLS FE FE OLS OLS FE FE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Improved chickpea 0.258*** 0.127* 0.054 0.076 −0.017 −0.079*** 0.054* −0.045** 2.849*** 2.814*** 2.523*** 2.379***
(0.072) (0.070) (0.089) (0.088) (0.026) (0.014) (0.030) (0.018) (0.308) (0.311) (0.390) (0.399)

Covariates No Yes No Yes No Yes No Yes No Yes No Yes
Year Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household Controls No Yes No Yes No Yes No Yes No Yes No Yes
District Controls Yes Yes No No Yes Yes No No Yes Yes No No
Household FE No No Yes Yes No No Yes Yes No No Yes Yes
Observations 1,408 1,408 1,408 1,408 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800
R2 0.043 0.163 0.006 0.058 0.136 0.769 0.004 0.754 0.178 0.246 0.135 0.129

Note: Dependent variable is either log of chickpea yield, log of production costs per hectare, or log of on-farm profit per hectare. In specifications in which include covariates, these include the set
of inputs presented in Table A1. Where the dependent variable is measured in dollar terms, we convert relevant covariates to value terms. Additional household controls include gender of household
head, household size, off-farm income, land ownership, average rainfall for the season, and rainfall shock. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 4: CRE reduced form and structural estimates

Ln chickpea yield (kg/ha) Ln production cost (USD/ha) Ln on-farm profit (USD/ha)

Reduced Form Estimates

Without covariates With covariates Without covariates With covariates Without covariates With covariates
2007 2010 2014 2007 2010 2014 2007 2010 2014 2007 2010 2014 2007 2010 2014 2007 2010 2014

Improved, 0.102 0.154*** 0.222** 0.020 −0.080 0.064 0.278*** 0.228*** 0.156*** −0.047** 0.001 0.012 0.834* 0.136 −1.480*** 1.922*** −0.304 −0.551
2007 (0.078) (0.060) (0.105) (0.081) (0.060) (0.116) (0.046) (0.050) (0.041) (0.024) (0.023) (0.017) (0.441) (0.529) (0.574) (0.454) (0.565) (0.545)

Improved, 0.044 0.023 −0.012 0.096 0.165** −0.034 −0.073 −0.010 −0.060 −0.016 −0.039* 0.002 −0.387 3.004*** 0.160 −0.263 2.526*** −0.650
2010 (0.101) (0.077) (0.136) (0.095) (0.070) (0.137) (0.044) (0.049) (0.040) (0.023) (0.023) (0.017) (0.430) (0.516) (0.560) (0.443) (0.551) (0.532)

Improved, 0.425*** 0.131 0.306* 0.194 0.302*** −0.035 −0.087* −0.203*** 0.139*** −0.008 −0.046 −0.063*** 1.003** 2.299*** 4.297*** 0.529 1.398** 2.115***
2014 (0.128) (0.098) (0.173) (0.149) (0.111) (0.216) (0.052) (0.057) (0.046) (0.029) (0.029) (0.021) (0.501) (0.601) (0.651) (0.558) (0.695) (0.670)

Optimal Minimum Distance (OMD) Structural Estimates

Without covariates With covariates Without covariates With covariates Without covariates With covariates

β -0.041 0.057 0.054 -0.044** 2.487*** 2.330***
(0.074) (0.073) (0.037) (0.017) (0.407) (0.407)

λ1 0.163*** -0.046 0.198*** 0.005 -1.064*** -0.427
(0.049) (0.050) (0.029) (0.013) (0.342) (0.344)

λ2 0.045 0.084 -0.066** -0.002 0.042 -0.252
(0.068) (0.066) (0.027) (0.013) (0.311) (0.311)

λ3 0.259*** 0.212** -0.162*** -0.024 1.606*** 0.549
(0.072) (0.083) (0.033) (0.017) (0.348) (0.385)

Observations 1,011 1,011 1,800 1,800 1,800 1,800
χ2 1,472 1,651*** 3,237*** 1,069 11,513*** 2,952***

Note: Dependent variable is either log of chickpea yield, log of production costs per hectare, or log of on-farm profit per hectare. In specifications that include covariates, these include the set of inputs presented in Table A1. Where the dependent variable is measured in dollar
terms, we convert relevant covariates to value terms. Additional household controls include gender of household head, household size, off-farm income, land ownership, average rainfall for the season, and rainfall shock. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01).
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Table 5: Three year CRC OMD structural estimates

Ln chickpea yield (kg/ha) Ln production cost (USD/ha) Ln on-farm profit (USD/ha)

Without covariates With covariates Without covariates With covariates Without covariates With covariates

β −0.239 0.012 0.042 −0.047*** 2.269*** 2.360***
(0.628) (0.108) (0.040) (0.018) (0.472) (0.505)

φ 6.647 2.271 −0.241 0.909 1.202 4.325
(18.86) (4.109) (0.265) (1.667) (1.335) (9.198)

λ1 0.237 0.068 0.039 −0.023 −0.141 −0.350
(0.156) (0.161) (0.121) (0.041) (1.120) (0.820)

λ2 0.299*** 0.173 −0.074 0.030 0.525 −0.212
(0.109) (0.107) (0.060) (0.026) (0.651) (0.598)

λ3 0.272*** 0.140 −0.164*** −0.002 1.638*** 0.160
(0.104) (0.110) (0.046) (0.021) (0.465) (0.512)

λ4 −0.297** −0.237 0.246 0.020 0.275 0.361
(0.120) (0.179) (0.173) (0.050) (1.244) (0.840)

λ5 −0.183 −0.035 0.159 0.035 0.008 0.271
(0.265) (0.187) (0.144) (0.046) (1.157) (0.743)

λ6 −0.283*** −0.112 −0.028 −0.037 −0.479 0.130
(0.103) (0.118) (0.074) (0.030) (0.713) (0.532)

λ7 0.267** 0.186 −0.165 −0.028 −0.846 −0.404
(0.122) (0.161) (0.189) (0.056) (1.538) (0.918)

Observations 1,011 1,011 1,800 1,800 1,800 1,800
χ2 4,341*** 4,504*** 6,517*** 3,112*** 15,204*** 7,403***

Note: Dependent variable is either log of chickpea yield, log of production costs per hectare, or log of on-farm profit per hectare. In specifications that include
covariates, these include the set of inputs presented in Table A1. Where the dependent variable is measured in dollar terms, we convert relevant covariates to
value terms. Additional household controls include gender of household head, household size, off-farm income, land ownership, average rainfall for the season, and
rainfall shock. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 6: Crop mix over time

2007 2014

Always Future
MW-test

Always Future
MW-test

adopter disadopter adopter disadopter

Herfindahl Index 0.309 0.341 0.302 0.375 **
(0.085) (0.134) (0.082) (0.149)

Shannon Index -0.300 -0.329 -0.294 -0.361 **
(0.078) (0.118) (0.076) (0.129)

Cultivated area allocated to chickpea (%) 27.14 29.02 25.81 21.32
(14.07) (20.34) (10.78) (8.46)

Agricultural sales income (USD) 4,874 4,350 2,098 918.6 ***
(3,915) (4,493) (2,336) (1,064)

Share of chickpea production sold (%) 63.61 59.91 48.65 22.22 ***
(29.37) (24.51) (24.63) (9.94)

Chickpea share of sales income (%) 38.97 31.82 31.94 25.04
(23.31) (31.18) (25.42) (33.72)

Observations 147 16 147 16

Never Future
MW-test

Never Future
MW-test

adopter adopter adopter adopter

Herfindahl Index 0.393 0.409 0.409 0.331 ***
(0.126) (0.141) (0.151) (0.093)

Shannon Index -0.377 -0.390 -0.391 -0.322 ***
(0.112) (0.124) (0.131) (0.086)

Cultivated area allocated to chickpea (%) 20.25 18.88 17.47 26.51 ***
(14.06) (10.09) (9.79) (12.21)

Agricultural sales income (USD) 2,227 2,727 * 683.0 1,521 ***
(1,724) (2,212) (875.7) (1,253)

Share of chickpea production sold (%) 59.23 58.90 29.56 57.77 ***
(14.42) (23.17) (18.67) (25.30)

Chickpea share of sales income (%) 24.42 22.67 18.25 39.24 ***
(23.00) (18.36) (29.74) (27.09)

Observations 71 304 70 304

Note: Table displays the mean level of crop diversity and agricultural marketing variables by adoption type and year. In the upper panel,
“Always adopters” are those who in every year adopt improved chickpea. They are compared to “Future disadopters,” those households
who adopt in 2007 but disadopt in either 2010 or 2014. In the lower panel, “Never adopters” are those who in every year do not adopt
improved chickpea. They are compared to “Future adopters,” those households who do not adopt in 2007 but adopt in either 2010
or 2014. The Herfindahl Index is calculated as H =

∑R
i=1 p

2
i , where R is the total number of crop types and pi is the proportion of

cultivated area for each crop i. The Shannon Index is calculated as S = −
∑R

i=1 pi ln(pi), where all terms are as previously defined. The
final column for each year presents the results of Mann-Whitney two-sample tests for differences in distribution. Results are similar if a
Kolmogorov-Smirnov test is used. Significance of MW-tests are reported as ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Figure 1: Average rate of adoption of improved varieties by district

.2

.4

.6

.8

1

A
do

pt
io

n 
R

at
e 

 (
%

)

2007 2010 2014

Year

Average adoption rate Gimbichu adoption rate

Lume−Ejere adoption rate Minjar−Shenkora adoption rate

Note: Figure displays the percentage of households cultivating improved chickpea

varieties in a given year in the different study regions.

Figure 2: Distribution of returns for yields
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Note: Figure displays predicted returns for yields by household history of adoption.

Distribution of returns are calculated as β̂ + φ̂θ̂i, where θi is the comparative

advantage term for each household.
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Figure 3: Distribution of returns for production costs
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Note: Figure displays predicted returns for production costs per hectare by house-

hold history of adoption. Distribution of returns are calculated as β̂ + φ̂θ̂i, where

θi is the comparative advantage term for each household.

Figure 4: Distribution of returns for on-farm profits
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Note: Figure displays predicted returns for on-farm profits per hectare by house-

hold history of adoption. Distribution of returns are calculated as β̂ + φ̂θ̂i, where

θi is the comparative advantage term for each household.
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