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Abstract 
Blanket advice on optimal fertilizer application rates has failed to achieve 
potential yield gains for crop production in much of Sub-Saharan Africa. 
However, digital technology now makes it possible to deliver personalized 
extension services to farmers at a much lower cost. We present results from a 
randomized control trial designed to evaluate the effectiveness of a mobile 
application (or app) that provides personalized advice on rice nutrient 
management. We find that households who were only given personalized advice 
increase their yield by seven percent and increase their profit by 10 percent. We 
show that, on average, personalized advice increases yields without increasing the 
overall quantity of fertilizer used. We conclude that the scaling of personalized 
extension services could improve productivity and livelihoods in Sub-Saharan 
Africa without necessarily increasing the total amount of fertilizer in use. 
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All environments are intractably local. 

-James C. Scott, Seeing Like a State 

 

Throughout Sub-Saharan Africa, efforts by governments and development agencies to spur 

agricultural intensification have been meet with continued low levels of adoption of improved 

inputs. One explanation for the lack of adoption is that returns to improved inputs are highly 

heterogeneous. Unable to represent the complexity of actual farms, institutions produce official, 

standardized recommendations for the levels of input use, and the resulting expected yields, that 

are radically simplified. These simplified recommendations, as Scott (1998) notes, are made for 

administrative convenience, not ecological considerations. The result are development programs 

and policy “solutions” that pay scant attention to the particularity of a given field or farmer, 

collapsing or ignoring distinctions that might otherwise be relevant. While the recommendation to 

adopt improved inputs is accurate for the stylized farm, the necessary input levels, and the 

subsequent returns, can be very different on any particular farm. 

 To some extent, the simple abstractions made by institutions in promoting the adoption of 

improve inputs are understandable. Historically, it was prohibitively expensive to account for 

heterogeneity in fields and farms when producing recommendations on optimal input levels. This 

made blanket recommendations necessary, even if failure to formulate advice that was soil, crop, 

and climate specific resulted in inefficiencies, reducing yield and profit, and generated negative 

environmental externalities. In the past few years, however, mobile technology in the form of 

decision support tools (DSTs) have greatly reduced the cost of delivering personalized extension 

services (MacCarthy et al., 2017; Tjernström et al., 2020). DSTs allow for farmer input regarding 

local conditions in both the household and the environment. The goal of DSTs is to reduce 
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inefficiencies coming from grossly simplified recommendations, thereby raising the productivity 

and profitability from adopting improved inputs, though there is little rigorous evidence of their 

effectiveness in this regard. 

We assess the impact of personalized extension services delivered using a specific DST: 

RiceAdvice. RiceAdvice is an Android-based application (or app) that was developed by 

AfricaRice to provide personalized recommendations on nutrient management (type, quantity, and 

timing of fertilizer) in rice production. The app utilizes information and communication 

technology (ICT) that enables extension agents to gather data from farmers about the farmers’ 

particular local context. The app then provides farmers with specific crop, field, and seasonal 

advice regarding fertilizer application and agro-management practices (Saito et al., 2015a). 

To measure how households respond to personalized advice from the app compared to 

blanket advice from extension agents, we conduct a clustered randomized control trial (RCT) in 

Nigeria. We establish two simple treatment arms: 1) rice production with personalized advice on 

nutrient management and 2) rice production with personalized advice plus a grant that provides 

the recommended level of fertilizer. The second treatment aims to assess the importance of 

liquidity constraints on adoption of improved inputs. In addition to the two treatments, a control 

group received the government’s standardized advice regarding fertilizer application rates. We 

calculate impacts using OLS along with Analysis of Covariance (ANCOVA) estimation. 

Regardless of the estimation strategy, we find that households who were only given personalized 

advice increase their yield by around seven percent and increase their profit from rice by around 

10 percent. Households who received personalized advice in combination with the provision of 

fertilizer increase their yield by around 20 percent and increase their profit by around 23 percent. 

Interestingly, we find that RiceAdvice tends to decrease the average amount of fertilizer used by 
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those in the treatment. In response to the recommendations provided by the app, households 

decrease their use of NPK fertilizer while keeping their use of urea fertilizer unchanged. This 

suggests that personalized recommendations, via DSTs, could improve productivity and 

livelihoods in Sub-Saharan Africa relative to existing blanket recommendations, without 

necessarily increasing the overall amount of chemical fertilizer use, and the corresponding 

negative effects on the environment. 

Our study contributes to the extensive literature on technology adoption in several ways. 

First, we provide evidence that failure to account for heterogeneity in soil quality may be a limiting 

factor in the adoption of improved technology, at least among rice farming households in Nigeria. 

Numerous studies have documented that households in developing countries fail to adopt 

apparently profitable technologies (Foster and Rosenzweig, 2010; Jack, 2011, Magruder, 2018). 

Reasons for the lack of adoption include credit and risk constraints (Karlan et al., 2014), insecure 

property rights (Burchardi et al., 2019), limited access to insurance (Casaburi and Willis, 2018), 

missing input markets (Byerlee and Deininger, 2013), missing output markets (Michler et al., 

2019), learning externalities (Conley and Udry, 2010), and risk preferences (Liu, 2013). Suri 

(2011) has suggested that unobserved heterogeneity may make the returns to adoption for any 

individual farmer unprofitable, even if average returns to the technology are positive. While Suri 

(2011) focuses on heterogeneity in farmer ability, we focus on heterogeneity in soil quality. We 

find that providing personalized advice on optimal input use that accounts for differences in soil 

quality results in higher yield and profit, when compared to blanket extension advice. This suggests 

that how individuals are taught to use the technology plays an important role in whether that 

technology is profitable or not. 
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Second, we present new evidence regarding the effectiveness of information interventions. 

In general, information-only interventions have yielded null results. Bettinger et al. (2012) study 

the impact of providing aid eligibility information to low-income households, but find no effect. 

Ashraf et al. (2013) find that providing information about water purification fails to increase 

demand for pure water. Bryan et al. (2014) find no effect of information about migrant 

opportunities on the decision to migrate. One reason why studies of information-only interventions 

frequently find null results may be due to the overly broad nature of much of the information tested 

in these interventions. In the information-only arm of the RCT, we find positive and significant 

effects of personalized extension services on yield and profit. A study similar to ours, Tjernström 

et al. (2020), tests a mobile game designed to provide personalized information on input use for 

maize farmers in Kenya and finds similarly positive results. 

Third, our focus on delivering extension services in Nigeria adds to the small but growing 

literature on ways to improve the effectiveness of agricultural extension in developing countries. 

Previous research has looked at the effect of increased supervision on production in Madagascar 

(Bellemare, 2010), gender and network effects on the adoption of conservation agriculture in 

Mozambique (Kondylis et al., 2016; Kondylis et al., 2017), the effect of extension combined with 

grants on livestock production in Uruguay (Mullally and Maffioli, 2016), the impact of extension 

on food security in Uganda (Pan et al., 2018), and the use of ICTs to deliver blanket advice to 

farmers in India, Kenya, and Uganda (Cole and Fernando, 2018; Casaburi et al., 2019; Van 

Campenhout et al., 2020). To date, this literature has focused solely on improvements to the 

delivery of generic advice. One exception is Krishnan and Patnam (2014), who contrast learning 

from extension agents with learning from neighbors in Ethiopia. Though not its focus, Krishnan 

and Patnam (2014) provide indirect evidence for Scott’s (1998) argument that personalized, 
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localized advice is far more effective than centrally planned, broadly accurate advice. Our paper 

provides direct evidence in support of Scott’s (1998) argument. 

Finally, we present some of the first experimental results on the use of DSTs and other 

mobile technologies to address barriers to adoption. Innovations in ICT have greatly reduced the 

cost of delivering information that is targeted to individual users. While personalization is 

increasingly used to provide advertising content to internet users, the innovations are rapidly being 

applied to a host of new purposes, including education (Walz and Detering, 2015). Recent studies 

have examined the use of DSTs in adapting to climate change (Watkiss et al., 2015), 

operationalizing ecosystem services (Grêt-Regamey et al., 2017), and improving agricultural 

production (Rose et al., 2016). However, most studies of DSTs are based on either observational 

data or on data collected from highly controlled laboratory-type settings. To our knowledge, this 

study, along with Tjernström et al. (2020), are the first RCTs to assess the economic impact of 

DSTs on agricultural production. 

In what follows, we first detail the setting and technology (Section 1). We then describe 

the experimental design and data collection process (Section 2). Section 3 outlines the assumptions 

underlining the causal pathway and our resulting empirical strategy. We present primary and 

secondary results in Sections 4 and 5. Section 6 discuss implications of the study and concludes. 

 
1. Rice in Nigeria and the RiceAdvice App 

Rice now represents the staple food for more than 750 million people in Sub-Saharan Africa 

(USDA, 2018). Nigeria, a country with 170 million people, has a population growth rate of 2.5 

percent per year, while rice consumption has risen at approximately six percent per year. This 

makes Nigeria the top consumer of rice in Sub-Saharan Africa. 
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Rice production in Nigeria is concentrated in seven states in the northwest of the country 

(Kano, Kaduna, Jigawa, Sokoto, Zamfara, Kebbi, and Niger) where 72 percent of rice is produced. 

Although rice production is increasing, local production represents only 55 percent of consumption 

(Saito et al., 2015b). As a result, Nigeria imported nearly 2.6 million tons of milled rice at a cost 

over one billion U.S. dollars in 2017 (USDA, 2018). The gap between production and consumption 

is partly due to yields that are well below their potential. Average yield is around two tons per 

hectare, while the potential yield for water-unlimited lowland rice is up to 12 tons per hectare (van 

Oort et al., 2017). With rice yield gaps that range from 10 to 70 percent in Sub-Saharan Africa, 

Nigeria is among the countries with the largest difference between potential and actual yields 

(Saito et al., 2015b). 

To reduce its reliance on imported rice, the government of Nigeria has embarked on a 

program to increase production and productivity through intensifying rice cultivation. Among 

other actions, the government recently launched the Growth Enhancement Support Program, a 

major policy shift that transfers the supply system for farm inputs from the state to the private 

sector. However, the policy aims at increasing adoption of fertilizer by addressing only missing 

input or output markets. The effectiveness of such a policy may be limited unless it also seeks to 

address on-farm inefficiency in fertilizer use due to heterogeneity in soil quality. To help address 

this gap, AfricaRice, in conjunction with national partners, developed the RiceAdvice mobile app. 

The RiceAdvice app is an Android-based DST that extension agents can use to provide 

farming households with pre-season, field-specific management guidelines for rice production. 

The extension advice includes a nutrient management plan, a suggested crop calendar, and 

information regarding best practices for rice cultivation. To generate this advice, farmers provide 

information on the geographic location of the plot, descriptive soil quality measures, local rice-
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growing conditions, seed variety, typical management practices, expected sowing date, availability 

of fertilizers, market prices for inputs, and expected production costs (Saito et al., 2015a). Figure 

1.A provides examples of the data input screens for the app. As output, RiceAdvice gives field-

specific information on the chemical fertilizers required, a fertilizer application plan, fertilizer cost, 

and recommendations regarding cultivation practices, such as levelling, timely and uniform 

sowing, weeding, and anticipated harvest date. Figure 1.B provides examples of the personalized 

output from the app. Saito et al. (2015a) provides more detail on the specifics of the app. 

 
2. Experimental design, sampling, and data 

To assess the impact of personalized advice provided by the DST on household decision making, 

we conducted a clustered RCT in the main rice producing state of Kano. Households were 

randomly assigned to a control group or one of two treatment groups. An extension agent then 

visited each farmer (both control and treatment) one time. The same set of extension agents were 

used in both treatment and control to diminish agent effects. The visit was done physically and it 

occurred at the beginning of the growing season. In the control group (C), households received 

blanket advice provided by the extension agent.1 The blanket advice, which comes from the 

Federal Ministry of Agriculture and Rural Development, varies solely by crop and whether soil is 

classified by low, medium, or high fertility (Chude et al., 2012). Table A.1 in the Appendix 

reproduces the government’s recommendations for fertilizing rice. In the first treatment group 

(T1), farming households were offered personalized advice delivered by the extension agent using 

the RiceAdvice app. This information-only treatment was designed to assess whether the 

 
1 Using a pure control group that received no contact from extension would confound the effects of the extension 
agent with the effects of the app. One would be unable to tell if the app itself was having an effect or if it was just 
the effect of a visit from an extension agent. Thus, the experiment was designed to allow identification of the 
marginal improvement of the app relative to the type of extension currently provided in Nigeria. 
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personalized advice was more effective than the blanket advice offered by extension agents. In the 

second treatment group (T2), farming households were offered personalized advice using 

RiceAdvice along with a 100 percent subsidy (grant) for the quantity of fertilizer recommended 

by the RiceAdvice app. The grant was provided in-kind, with AfricaRice delivering the 

recommended amount of each type of fertilizer to each household. This subsidy treatment was 

designed to remove the liquidity constraint that is commonly assumed to be binding for 

smallholder farmers in developing countries.2 

 
2.1.Sampling, compliance, and attrition 

To select the study area and farming households in the sample, we used a multi-level stratified 

sampling approach. First, we selected Kano state because it is the major rice producing region in 

Nigeria. Second, we identified the rice producing Local Government Areas (LGAs) in Kano, and 

randomly selected five from the eight major irrigated rice production LGAs (see Figure A.1 in the 

Appendix). Third, we stratified by LGA so that the random selection of rice producing villages 

would be proportional to the total number of rice-growing villages in the LGA. In total, 35 villages 

were selected and were randomly divided into two groups: 18 treated villages and 17 control (see 

Figure 2). In addition, the treated villages were randomly assigned to one of the two treatment 

groups: treatment villages that received the information-only treatment (T1) and treatment villages 

that received the subsidy treatment combined with RiceAdvice (T2). Finally, within villages we 

randomly selected 20 households from a census of all rice farming households. In total, 700 

households were sampled in 35 villages, including 360 treated households and 340 control 

 
2 Note that we do not consider the two treatment arms as part of a partial 2x2 design but rather as independent 
treatments, which we evaluate as such. 
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households. The treated households were divided into two groups: 260 treated households for T1 

and 100 treated households for T2. 

The sample size of each group was determined by our own power calculations and the 

administrative budget available to provide the fertilizer subsidy for households in the second 

treatment group.3 To increase the power of the sampling, we selected treatment and control villages 

in each LGA using a matched pair randomization approach (Imai et al., 2009). However, 

implementation of our design was imperfect in that one control village was treated by an extension 

agent, which caused 20 households assigned to the control group to be given the information-only 

treatment. This represents a contamination rate of 2.8 percent but analysis shows that this has no 

effect on the significance of RiceAdvice’s impacts on our outcomes.4 The rate of non-compliance 

was also low. Only 12 households out of 700 did not use the personalized advice, which represents 

a rate of 1.7 percent. This non-compliance rate is much lower than those experienced in other 

information interventions. For instance, Fafchamps and Minten (2012) report a non-compliance 

rate of 27 percent in their SMS-based information intervention. The main reason given for non-

compliance in our sample was uncertainty about the riskiness of applying fertilizer at a rate 

different from a household’s historic application rate. Despite the low non-compliance rate, we 

still interpret our results as intent to treat (ITT) effects. 

We use three rounds of a household-level panel survey data in our analysis. First, a baseline 

survey was conducted in early 2016 in order to collect information on farm production before the 

treatment. We then conducted our intervention ahead of the rice growing season. A second survey 

 
3 To calculate the sample size, we used rice production data from 200 households who participated in an on-farm trial 
in the survey area. With a minimum detectable effect size of 0.5t/ha (the yield control was estimated to be 4t/ha and 
4.5t/ha for the treatment groups), a standard deviation of 1.64 t/ha and a power of 0.8, we required sample sizes of 
340 (C) and 340 (T1+T2) to detect effects at standard levels of confidence. 
4 The impact on outcomes do not change substantially when the contaminated households are dropped from the 
analysis or included in the treatment. The results are not shown here but can be obtained from the authors. 



11 
 

was conducted immediately after the 2016 rice harvest was completed. Finally, we conducted a 

follow-up survey one year later, at the end of the 2017 rice season in order to analyze the behavior 

of households during the second year following the intervention. While we were able to follow-up 

with all households in every year, not every household chose to produce rice in every year. As an 

example, six of the 700 household chose not to produce rice in 2016, which is less than one percent 

of the sample. Thus, while there is no classical attrition in the data, sample size does vary slightly 

across years. Table A.2 in the Appendix reports these differences in sample size. We also follow 

Lee (2009) in calculating bounds for how large an effect these missing values might have on our 

estimates. 

 

2.2.Measurement 

In order to reduce both noise and bias in the measurement of our outcome variables, we relied as 

much as possible on objective instead of self-reported information.5 To determine yields, rice plots 

were traced using hand-held GPS devices. At harvest, we implemented one-meter squared crop 

cutting and took crop cuts from two locations in each plot. The quantity of fertilizer input was 

measured on a scale for those receiving the fertilizer subsidy but was self-reported for those in the 

information-only treatment and control households. Rice income is calculated by multiplying 

household yield (in tons per hectare) by the average unit price of paddy rice (in US$ per ton) in 

the data. Rice profit is simply the difference between rice income and the sum of all rice production 

costs, including the cost of the subsidy, while excluding the cost of labor and equipment, for which 

unit prices are notoriously difficult to calculate. 

 
5 Recent research has shown that self-reported measurements of area planted and quantity harvested can be 
susceptible to non-classical measurement error (Abay et al., 2019). Failing to account for this mis-measurement can 
bias results (Gourlay et al., 2019). 
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Socio-economic data was collected through household interviews. Measurement of age and 

household size are straightforward. Education is recorded as a binary variable equal to one if the 

farmer had received formal education for at least six years (completed primary school). The 

household’s main activity is measured by a binary variable equal to one if crop production is the 

main occupation of the household head. In cases where farming is not the main activity, the 

household head is typically engaged in trade or transportation, with other household members 

responsible for the farm. The number of agricultural training days is measured as the number of 

days the farmer participated in agricultural training over the previous twelve-month period. Access 

to credit is a binary variable equal to one if the household received credit to cover the cost of any 

farm production practice, not just rice, over the last twelve months. 

 
2.3.Baseline balance checks 

Table 1 presents the pre-treatment balance of baseline characteristics based on the original, pre-

contaminated randomization.6 Column (1) reports the mean value of each variable for the control 

group and its standard deviation, while columns (2) - (4) report the coefficients from OLS 

regressions comparing treated households with the control. We regress the variable of interest 

(row) on an indicator of treatment status (column) along with LGA (strata) fixed effects and 

standard errors clustered at the village level. Column (2) shows the pre-treatment difference in the 

means between assignment to any treatment (T) and the control group (C). Column (3) shows the 

difference between the information-only treatment group (T1) and the control group. The pre-

treatment difference between the subsidy group (T2) and the control group is in column (4). 

 
6 We also check for balance based on the post-contaminated, random assignment (see Table A.3 in the Appendix). 
As is to be expected if the contamination occurred by chance, the balance between treatment and control in the two 
samples (pre- and post-contamination) is virtually identical. 
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The coefficients suggest a good balance for most household characteristics. The two 

exceptions are age of household head, where those in the control are older by two years compared 

to those in the information-only treatment, and the area planted to rice, where those in either of the 

treatment groups cultivate a quarter of a hectare more than those in the control group. Among the 

variables related to farm production, there is balance on all the outcome variables except when 

comparing the subsidy treatment (T2) to the control. At baseline, households in the second 

treatment group applied 25 kg/ha more urea than households in the control group. We account for 

these differences in baseline characteristics in several of our econometric specifications. 

 

3. Empirical Framework 

3.1.Causal pathway and outcomes 

Before outlining our empirical strategy, it is useful to formulate the assumptions underlying the 

causal pathway from the provision of personalized extension advice via DST to measured 

outcomes. First, we assume that households are aware that nutrient management (type of fertilizer, 

quantity of fertilizer, and application timing) has a direct effect on rice yield and profitability. 

Second, we assume that households believe that personalized advice from DSTs such as 

RiceAdvice will recommend levels of input use that differ from their current level of input use. 

Third, we assume that treated households believe that the use of personalized advice will increase 

the productivity of rice compared to blanket advice. Finally, we assume that the treated and non-

treated households sell rice at the same price and that the value of the increase in yield will be 

greater than the change in costs related to the use of the personalized advice. These assumptions 

are supported by anecdotal evidence in Saito et al. (2015a) and MacCarthy et al. (2017). 

Based on these assumptions, the causal pathway is straightforward. RiceAdvice will 

generate personalized advice that differs from the household’s current practice and thus will result 
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in a change in the quantity, type, and timing of fertilizer. This change in nutrient management will 

affect land productivity, leading to changes in production. Ultimately, the changes in production 

will have a positive impact on profit. 

Given the causal pathway, our main outcomes of interest are rice yield and rice profit. 

However, we also report on secondary outcomes in order to elucidate the causal chain. In the 

results, we explicitly distinguish between the expected main outcomes and secondary outcomes 

(the quantity and type of fertilizer and application timing). 

 
3.2.Intent-to-treat (ITT) estimation 

We focus on the estimation of the impact of personalized advice regarding nutrient management 

on rice yield and rice profit. To estimate these impacts, we compare the outcomes for households 

in each treatment group with the outcomes in the absence of the treatment. Because we have the 

benefit of observing each household in our sample before and after treatment, we employ two 

different methods to calculate the intent-to-treat (ITT) effects, which measure the effect of living 

in a village randomly assigned to a treatment, irrespective of actual household participation in the 

treatment. These methods are i) an OLS estimate that uses only the post-intervention data and ii) 

an Analysis of Covariance (ANCOVA) estimate that uses the baseline and post-intervention data. 

We estimate the ITT effect for both methods with and without baseline control variables. 

 For the post-intervention data, we use OLS to estimate the ITT effect (𝜌𝜌𝑖𝑖) for household ℎ 

in village 𝑣𝑣 and LGA 𝑔𝑔 as: 

𝑆𝑆ℎ𝑣𝑣𝑣𝑣 = 𝛼𝛼 + 𝜌𝜌1𝑇𝑇1ℎ + 𝜌𝜌2𝑇𝑇2ℎ + 𝜎𝜎𝑔𝑔 + 𝜀𝜀ℎ𝑣𝑣𝑣𝑣 (1) 

where 𝑆𝑆ℎ𝑣𝑣𝑣𝑣 is the observed outcome variable, 𝑇𝑇1 and 𝑇𝑇2 are household-level indicators that equal 

one depending on which treatment group the household was assigned to and is zero otherwise. 

Additionally, 𝜎𝜎𝑔𝑔 is a strata fixed effect that accounts for variation across the LGAs and 𝜀𝜀ℎ𝑣𝑣𝑣𝑣 is an 
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idiosyncratic error term that is orthogonal to the ITT effect because of the randomization. In order 

to account for the imbalance in some of the baseline characteristics, we specify a second OLS 

regression that adds a vector of household covariates. These covariates include age of the 

household head, household size, the number of days the farmer participated in agricultural training, 

and indicators if the household head has any formal education, if crop production is the main 

household occupation, and if the household had access to credit over the last twelve months. 

Our second estimator is an ANCOVA estimate of the treatment effect: 

𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑡𝑡 = 𝛼𝛼 + 𝛾𝛾1𝑇𝑇1ℎ,𝑡𝑡 + 𝛾𝛾2𝑇𝑇2ℎ,𝑡𝑡 + 𝜇𝜇𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑡𝑡 + 𝜎𝜎𝑔𝑔 + 𝜀𝜀ℎ𝑣𝑣𝑣𝑣,𝑡𝑡. (2) 

Here 𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃 is the value of the outcome variable from the pre-treatment growing season and 𝛾𝛾𝑖𝑖 

is the coefficient on the ANCOVA estimate of the ITT effect for each treatment group. The 

equation also includes time fixed effects (δt) in addition to strata fixed effects. The ANCOVA 

estimator has more power than the typical difference-in-difference estimator, especially when 

there are multiple rounds of post-treatment data (McKenzie, 2012), which we have in our sample. 

Similar to the OLS estimates, we also estimate ANCOVA with and without covariates. 

 
3.3.Sampling weights, clustering, and multiple hypothesis testing 

Because we used a multi-level stratified sampling approach, different households have different 

probabilities of being sampled. As a result, assuming equal probability could lead to biased 

estimates of the population effects (Ksoll et al., 2016). Therefore, we use sampling weights 

calculated as the inverse probability of being selected in any given village for each observation. 

We use the weighted data in all the regressions, though our results are robust to using the raw data. 

Because the ultimate sampling units (households) are clustered within our unit of 

randomization (village), we cannot rule out serial correlation within a village. Although the intra-
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cluster correlation coefficient (ICC) is relatively low (see Table A.4 in the Appendix), ignoring 

the clustered design will lead to standard errors that are too small and 𝑡𝑡-statistics that are too large. 

Even when individual behaviour may generate homoskedastic regression functions within a 

cluster, there is heterogeneity between villages, and there will be heteroskedasticity in the overall 

regression (Cameron and Miller, 2015). Therefore, we use heteroskedasticity robust-standard 

errors clustered at the village level for all inference. 

Because we are making inference on a large number of hypotheses, it is possible that 

significant results emerge from our analysis due to chance rather than actual treatment effects. 

While the problem of multiple inference is well known, there is as yet no consensus regarding the 

best way to correct for multiple hypothesis testing. We follow Arouna et al. (2019) and adjust the 

𝑝𝑝-values in a number of different ways. We calculate Romano-Wolf adjusted 𝑝𝑝-values following 

Clarke et al. (2019) to correct for the familywise error rate (FWER), the probability of making at 

least one false discovery among a family of comparisons. We also calculate sharpened 𝑞𝑞-values as 

in Anderson (2008) to correct for the false discovery rate (FDR), the probability of making at least 

one false discovery among the discoveries already made. In the Appendix, Table A.5 and Table 

A.6 present the results of these corrections along with the unadjusted 𝑝𝑝-values from standard errors 

clustered at the village level. Our findings are generally robust to the correction for multiple 

hypothesis testing and we highlight were differences exist. 

 
4. Results for primary outcomes 

Before proceeding to the regression results, we first present graphical evidence of the simple mean 

difference between each treatment and the control. Figure 3 draws the distribution of post-

treatment outcomes pooling both 2016 and 2017 data. To these kernel density plots we add vertical 

lines to mark the unconditional mean for each group for each outcome. Visual inspection reveals 
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substantially larger means for each treatment group relative to the control group for yield and 

profit. The graphs also reveal that the means for the information-only and the subsidy treatment 

are fairly similar. In terms of fertilizer use, households in the treatment groups tend to use less 

fertilizer than those in the control group, though these differences are not as pronounced as those 

in yield and profit. This suggests that RiceAdvice may be having an effect on not only the rate of 

fertilizer use but the timing as well. In the remainder of this section we present the results of the 

primary outcomes (yield and profit) and in the next section examine whether the intervention also 

changed input management practices. 

For each outcome we begin by presenting OLS and ANCOVA estimates of the ITT for the 

pooled post-treatment data. The odd numbered columns are without covariates while the even 

numbered columns include covariates. The ANCOVA regressions also include the pretreatment 

outcome (2015) as a covariate. Because they rely on the full sample of data, and control for 

baseline outcomes, the ANCOVA estimates with covariates are our preferred estimates. We then 

estimate effects for each year individually, using OLS and ANCOVA, in order to gain a better 

sense of how outcomes change over time. 

 
4.1.Treatment effect on yield 

Table 2 presents the ITT effects of personalized advice from the RiceAdvice DST on rice yield by 

including indicator variables for each treatment group (information-only and information with the 

subsidy). We then compute point estimates and standard errors for the linear combination of the 

treatment coefficients to determine the combined effect of the treatments. We also calculate 
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estimates of the difference between the two treatment groups to determine the effect of adding the 

subsidy to the information-only treatment.7 

We find consistent evidence that personalized advice increases rice yield subsequent to the 

treatment (Panel A). For those in the information-only treatment, yields increase by about 250 

kg/ha, which represents an increase of seven percent compared to the control. For households that 

received the fertilizer subsidy in addition to RiceAdvice, yields increase by about 730 kg/ha, which 

represents a 20 percent gain over yields for control households. Not only is the effect size of T2 

larger than T1, when we compare outcomes between these two treatment arms, we find that this 

difference is statistically significant. The similarity between OLS and ANCOVA estimates, as well 

as between regressions with and without controls, suggests that the small differences in baseline 

characteristics are uncorrelated with treatment. 

While we give preference to the ANCOVA results using all three years of data, it is useful 

to understand how outcomes change over time. To do this, we present results in Panel B that rely 

only on outcomes in 2016, the harvest immediately following the intervention. Across all 

regressions we find effect sizes in 2016 that are similar to the estimated effect sizes using all rounds 

of data. Panel C presents estimates of the ITT using yield data from one year after the intervention 

(2017). Given that soil characteristics change very slowly over time, the advice provided as part 

of the study should still be valid a year later. Thus, we would expect impacts to be of a similar size 

regardless of whether we use the 2016 or 2017 yield data. Treatment effects for the group that 

received the subsidy are larger than the overall effect but again, not substantially so. The treatment 

effects for the information-only group in 2017 are not significant despite point estimates that are 

 
7 It should be noted that since our experiment is not a 2x2 design, we are unable to estimate the overall effect of 
RiceAdvice. We can only estimate the effect of just RiceAdvice by itself and the effect when RiceAdvice is 
combined with the subsidy. 
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similar to those for 2016 and overall. We believe the lack of significance is due to the increase in 

the standard errors on the coefficients and not due to a reduction in the impact of the treatment 

over time. 

These results imply that knowledge matters, even without relaxing the liquidity constraint. 

If liquidity were the primary constraint limiting agricultural intensification, then the information-

only treatment would have no discernable effect. This is not to say that credit markets operate 

perfectly in the region. If they did, then there would be no difference in outcomes between the 

information-only treatment and the treatment that included the subsidy. Rather, our results 

demonstrate that while liquidity is an issue, households are still able to take advantage of extension 

advice if it has been adapted to their context. This result is surprising, because the agricultural 

development literature frequently argues for the primacy of liquidity constraints and finds little 

evidence for the effectiveness of information-only interventions (Holden and Lunduka, 2013; 

Jones and Kondylis, 2018). Two important factors should be considered when comparing our 

results to those in the literature. First, Nigeria is among the countries in Africa with the highest 

levels of fertilizer use and fertilizer use is relatively common in Kano (Liverpool-Tasie, 2014). 

Second, previous studies of information-only interventions focus on the delivery of broad, 

standardized advice. The information provided by the DST in our study is tailored to each treated 

household. Thus, while the evidence regarding liquidity may lack external validity, the impact of 

digitally delivered personalized extension advice is likely to be generalizable to other settings. 

 
4.2.Treatment effect on profit 

From an economic point of view, the positive impact of the information-only treatment on yield 

cannot alone justify promotion of the app for scaling. Accordingly, in this subsection we focus on 

the effect of treatment on profit. Panel A of Table 3 presents the ITT effects of RiceAdvice on rice 
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profit per hectare in the full set of data (both 2016 and 2017 outcomes). Panel B presents results 

from the initial year while Panel C presents results from the follow-up year. 

We find clear evidence that personalized advice on nutrient management increases the 

profit from rice production. As with yields, the differences between OLS and ANCOVA estimates, 

as well as the differences with and without covariates, are minor. Households randomly assigned 

to the information-only treatment increase their profit by about $120, or 10 percent over control 

households. Gains were substantially larger for households that received the subsidized fertilizer, 

as they were likely able to reallocate funds to other productive activities. Households who received 

fertilizer in addition to RiceAdvice saw profit rise by about $275 or 23 percent compared to control 

households. As with the results for yields, there are significant differences between outcomes for 

those in each treatment. What is interesting, though, is that the fertilizer subsidy is not a necessary 

condition for households to make use of the recommendations from RiceAdvice. 

To understand the effects of the intervention over time, we again estimate the ITT for each 

year separately. Profit for treated households is significantly higher than the control in each year. 

While the combined treatment effect is significant in each year, we again see a loss of significance 

for the information-only treatment effect in the second year. Yet, on average, the relative size of 

the gains made by households who received the information-only treatment do not change. Profits 

for those in the information-only group rose by 11 percent in 2016 and 9.5 percent in 2017. 

Because of this, we believe that the lack of significance reflects a lack of precision in the estimates 

and not a true null effect. 

These findings imply that additional production costs related to the personalized advice are 

less than the gain in yield. While the size of the gains are subject to year-to-year variation in input 

and output prices, the gains are always positive. Again, our results contrast with much of the 
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existing literature on the impact of information-only treatments. Indicative of this literature is 

Duflo et al. (2008), who find that blanket fertilizer advice from an official extension agency in 

Kenya has no effect on farm profits. We believe that such information-only interventions have 

been ineffective because the information provided is too general and fails to account for 

heterogeneity at the farm-level. By contrast, our intervention relies on a mobile DST that provides 

nutrient management advice adapted to the needs of the specific household. 

 
5. Results for secondary outcomes 

To investigate possible causal channels through which the adoption of personalized advice may 

influence yield and profit, we test the treatment effect on two intermediate outcomes: the quantity 

of fertilizer and the timing of fertilizer application. 

 

5.1.Treatment effect on fertilizer quantity 

The provision of personalized advice to farming households may increase or decrease the quantity 

of fertilizer depending on the initial distance of production to the efficiency frontier. Table 4 

presents results from estimations of the ITT effect on the quantity of fertilizer used. Contrary to 

our priors, we find little evidence that personalized advice on nutrient management has an effect 

on the quantity of fertilizer. While the combined effect and the subsidy effect are significant, the 

preponderance of evidence is that those in the treatment groups use about the same amount of 

fertilizer as those in the control group. 

There are two possible explanations for the mostly null results. First, it may be that some 

households increase their fertilizer quantity while other households decrease it, which would lead 

to a null effect on average. To investigate this explanation, we use a quantile regression, similar to 

Hossain et al. (2019), in order to estimate the slope and shape of the conditional distribution. We 
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estimate the ITT effect on fertilizer quantity for three quartiles: the lower quartile (25th percentile), 

the median quartile (50th percentile), and the upper quartile (75th percentile). We do not find 

substantial variation between quartiles in any of the treatment groups (see Table A.7 in the 

Appendix). 

Second, rice farmers in the survey areas primarily use two types of fertilizer: NPK 15-15-

15 and urea 46-0-0. The blanket extension advice provided by the Ministry of Agriculture and 

Rural Development breaks down fertilizer by deficiency in either nitrogen (N), phosphorous (P), 

and potassium (K). So, for both blanket advice and RiceAdvice, recommendations are for a 

specific compound fertilizer. Thus, the adoption of personalized extension advice may increase 

the quantity of one type of fertilizer while decreasing the quantity of the other type of fertilizer, 

which would result in a null effect on average. To investigate this second possible explanation, we 

model the treatment effect on NPK and urea quantities separately (see Table 5 and Table 6). 

Our results show that personalized advice does have an effect on both the type and quantity 

of fertilizer in use – a result masked by a focus on average effects. Households in both treatment 

groups tend to reduce the amount of NPK and maintain or even increase the amount of urea, though 

the decrease in NPK (16-38 kg/ha) is larger than the increase in urea (7-12 kg/ha). We also find 

differences in NPK and urea use based on treatment arm. For NPK, the decrease in the amount of 

fertilizer use is similar for those in both the information-only and information plus subsidy 

treatments. When we directly compare T2 to T1, we find the differences in NPK use are not 

significant. For urea, the increase in quantity is driven by households in the information-only 

treatment. Households who received the recommended amount of urea fertilizer apply the same 

amount or slightly less urea as households in the control. 
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The NPK and urea regressions demonstrate that while the average amount of fertilizer used 

by the treatment groups was unaffected by the treatment, households did change their amount of 

fertilizer, just in offsetting ways. These results support Suri’s (2011) conjecture that a focus on 

average effects masks highly heterogeneous returns to agricultural technologies. The blanket 

advice offered by extension agents may be correct for the average household, but no single 

household is exactly average. Relying on blanket recommendations, households may end up over-

using one type of fertilizer while under-using a different type of fertilizer. Households provided 

with personalized extension advice adjust their application rates up or down, as needed. The result 

is a null effect on average, though households make adjustments to the quantity of each type of 

fertilizer they use. 

 
5.2.Treatment effect on the application timing of fertilizer 

In addition to the size of the fertilizer dose, application timing is vital to productive crop growth. 

For rice, the recommendation is to apply fertilizer four times during the growing season: basal (at 

transplanting or 16-20 days after sowing for direct seeding), tilling (36-40 days after sowing), 

panicle initiation (53-57 days after sowing), and booting (78-82 days after sowing). In Table 7 and 

Table 8, we assess the effect of personalized advice from RiceAdvice on the application timing of 

NPK and urea, respectively. 

We find evidence of a negative effect on the application period (number of days after 

sowing) of NPK.8 Treated households applied NPK about three days earlier than control 

households. As one would expect, there is no difference in application timing between the two 

treatment groups, since the only difference between the two treatments is the fertilizer subsidy. 

 
8 Only one application of each type of fertilizer is common among farmers. So the application time used is the number 
of days after sowing for the first application of fertilizer. 
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We find almost no evidence that the treatment had an effect on the application period of urea 

fertilizer, meaning that the treated and control households applied urea at approximately the same 

time after the sowing date. The differences between the treatment’s effect on NPK and urea timing 

may be due to differences in familiarity with the type of fertilizer. Alternatively, it could be due to 

the different application period of each fertilizer, with NPK typically being applied at transplanting 

and urea typically being applied at tilling. However, even where differences are significant, the 

size of the effect is only two or three days, which may not be meaningful in an agronomic sense, 

since the application windows are five days in length. 

 
5.3.Robustness and Limitations 

While we find consistent and significant impacts of both the information-only treatment and the 

subsidy treatment on yields and profits, one may wonder if the results are robust to different 

inference, different samples, and different transformations of the data. 

 Our first check is to verify that the results are robust to adjustments for multiple 

comparisons. We calculate adjusted p-values as well as sharpened q-values following Clarke et al. 

(2019) and Anderson (2008), respectively. Results are reported in Table A.5 and Table A.6 in the 

Appendix. Across all regressions and using both methods, results that were significant remain 

significant when adjusting for multiple comparisons. The only exception is the timing of NPK 

application, where p-values and sharpened q-values remain small but adjust p-values become 

larger than 0.10. 

Our second check is to verify that the results are robust to the missing data from households 

that chose not to cultivate rice in a given year. The number of missing observations is extremely 

small relative to the overall sample (see Table A.2 in the Appendix). We calculate Lee bounds on 

each treatment effect (Lee, 2009) and results are reported in Table A.8 in the Appendix. Our 
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primary outcomes are bounded away from zero. In fact, for all outcomes where we saw a consistent 

treatment effect remain significant when accounting for the missing data. 

Third, we implement a randomization inference procedure proposed by Heß (2017). In 

classical inference, the assumption is that the treatment is fixed and the sample is a random draw. 

In randomization inference, the assumption is that the sample is fixed and the assignment to 

treatment is a random draw. For each ANCOVA regression with covariates, we randomly permute 

the treatment indicator 5,000 times, taking into account the clustered design of the experiment. 

The procedure allows us to build a reference sample under the null hypothesis of no treatment 

effect. We then plot this distribution of outcomes when the hypothetical treatment effect is zero 

and compare it to the observed treatment effect. Figures A.2 and A.3 in the Appendix present these 

results. As with the other adjustments, results that are significant in the main analysis remain 

significant. 

Next, we verify that our results are not due to a lack of balance in rice area across treatment 

groups. Our primary outcome variables are all in per hectare terms and so are adjusted for rice area 

post-treatment. Additionally, rice area is controlled for in the ANCOVA results because the per 

hectare outcomes pre-treatment are included as controls. Despite this, one may be concerned that 

impacts of yield or profit per hectare do not translate to total harvest and profit by affecting the 

area planted to rice. Table A.9 in the Appendix reports results from regressions in which total 

harvest, total profit, or rice area are the outcome. For harvest and profit, rice area in the baseline is 

include with the other covariates. In all cases for harvest and profit both treatments have a positive 

and significant impact on the two outcomes. Conversely, rice area is never significantly affected 

by either treatment. 
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Finally, we convert our primary outcomes from levels to logs. (see Table A.10 through Table 

A.16). We do this by using the inverse hyperbolic sine transformation, which allows us to retain 

zeros in the data as zeros, though the transformation only approximates the semi-elasticities from 

standard log transforms (Burbidge et al., 1988; Bellemare and Wichman, 2020). Of the 84 

regressions, results change from not significant as levels to significant as logs in 16 regressions. 

In four regressions results that were significant as levels are no longer significant as logs. The 

transformation does not change the significance (or lack of significance) for coefficient estimates 

in the remaining 60 regressions. The greatest sensitivity to the transformation are results regarding 

quantity of NPK or urea fertilizer. While both treatments significantly reduced the quantity of NPK 

applied over both years, this result is not robust when quantities are logged. Conversely, 

coefficients on T2 for 2017 for NPK application move from not significant to significant as do 

coefficients on T1 for 2016 for urea application. Of the 20 changes in significance, 12 occur in 

NPK or urea application rates. We conclude that there is some sensitivity regarding estimates when 

fertilizer is broken down by type. 

While our main results are robust to a number of alternative methods, the limitations of our 

study should be noted. First, because our study is not a 2x2 design, we are unable to measure the 

effect of only the subsidy or the overall effect of RiceAdvice. We are only able to directly estimate 

the impact of the information-only treatment and the impact of RiceAdvice combined with the 

fertilizer subsidy. We can calculate the total effect of both treatments and the differences between 

treatments but this requires a linearity assumption that may not hold. Second, while we believe 

that RiceAdvice is effective because it provides personalized recommendations that account for 

heterogeneity in the soil, we are unable to directly test this. We lack detailed data on soil and thus 

cannot directly measure if soil heterogeneity is the primary mechanism through which the app 
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works. Finally, like all RCTs, the results can only be said to hold for those who are represented by 

study participants. In our case, rice growing households in Kano, Nigeria. While we have no reason 

to suspect that RiceAdvice will be ineffective with rice growing households in other parts of the 

world, our study is unable to demonstrate this conjecture. 

 
6. Conclusion 

Historically, governments and development agencies have found it necessary to use abstracted, 

simplified, blank advice when promoting the adoption of improved technologies. One potential 

reason why adoption of these technologies has remained low is that while on average the 

recommendations are accurate, for any given household the recommendations will be wrong. The 

local environment at any particular farm means that blanket advice on fertilizer application will 

result in the farmer over or under using the input, with negative consequences for yield and profit. 

Until recently, the cost of adapting extension advice to local conditions was prohibitively 

expensive. But, with advances in mobile technology, decision support tools (DSTs) can be 

developed and disseminated at greatly reduced cost. By using DSTs, farmers and extension agents 

can fine-tune management practices by taking into account variations in local environmental and 

economic conditions, reduce their inefficiencies, and shorten the learning process. 

We explore the potential for an Android-based DST called RiceAdvice. The mobile app 

allows households to provide information to extension agents about their local growing conditions, 

production costs, and market information. The extension agent can then use the app to provide 

recommendations for a nutrient management plan designed to increase both yields and profits. 

Using a randomized control trial, we find that households with access to RiceAdvice increase their 

yields and profits. We also find that households are able to take advantage of the personalized 

extension information within their current credit constraints. Households in the information-only 
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treatment arm are still able to significantly improve their outcomes, though not by as much as 

households who received a subsidy to cover the full cost of the recommended fertilizer amount. 

These outcomes are not driven by an overall increase in the use of fertilizer. On average 

there is no significant difference between fertilizer application rates for treatment and control 

households. Rather, the personalized extension advice allows households that previously over-

used fertilizer to reduce their application rate and households who previously under-used fertilizer 

to increase their application rate. The study resulted in households increasing their yields and 

income while having a net zero effect on the total amount of fertilizer used. This suggests that 

improvements to productivity and livelihoods need not come at the cost of increased overall 

chemical fertilizer use, and the corresponding negative effects on the environment. 

While our results are specific to a particular DST, they add to a nascent body of literature 

suggesting that the null results typical of information-only interventions may be due to the overly 

broad information provided in the studies. In the case of technology adoption, how individuals are 

taught to use the technology plays an important role in whether that technology is beneficial or 

not. For farming households looking to take advantage of new seeds and other improved inputs, 

the revolution in mobile technology allows for a move away from the old one-size-fits-all advice 

and towards the delivery of personalized and profitable recommendations. 
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Figure 1.A: Screenshot of RiceAdvice data inputs 
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Figure 1.B: Screenshot of RiceAdvice outputs 
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Figure 2: Experiment design 

 
\
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Figure 3: Outcomes by treatment group 

 
Note: The figures show the distribution of post-experiment (2016 and 2017 pooled) values for each outcome variable by treatment group. Vertical lines mark the mean value for 
each outcome variable by treatment group. 
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Table 1: Baseline characteristics and balance pre-contamination 
 Control group 

[C] 
Difference 

with Treated 
[T-C] 

Difference 
with T1 
[T1-C] 

Difference 
with T2 
[T2-C] 

 (1) (2) (3) (4) 
Household characteristics         
Age of rice farmer (year) 37.47 (11.27) -1.631 -2.372* 0.237 
Household size (n) 11.52 (7.670) 0.319 0.507 -0.082 
Formal education (=1) 0.256 (0.437) -0.005 0.014 -0.045 
Farming is main activity (=1) 0.879 (0.326) -0.008 -0.022 0.032 
Agricultural training days (n) 0.653 (2.404) 0.270 0.082 0.834 
Access to credit (=1) 0.144 (0.352) 0.011 0.007 0.025 
Rice area (ha) 0.740 (0.508) 0.237*** 0.225** 0.296* 
     
Production values     
Rice yield (t/ha) 3.484 (1.759) -0.189 -0.242 -0.062 
Rice income (US$/ha) 1,675 (845.9) -91.02 -116.6 -29.62 
Profit (US$/ha) 1,357 (797.6) -83.92 -106.8 -30.54 
Quantity of NPK (kg/ha) 184.0 (87.71) -3.250 -6.989 6.380 
Quantity of urea (kg/ha) 164.0 (88.91) 10.57 4.734 25.64*** 
Note: The first column reports means of the data in the control group at baseline with standard deviations in 
parentheses. Columns (2) - (4) report coefficients from OLS regressions of the variables of interest on treatment 
status within different groups and represent the difference of treatment minus control. Significance tests are based on 
standard errors clustered at the village-level (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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Table 2: Treatment effects on rice yield (t/ha) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] 0.253** 0.249** 0.260** 0.258** 
 (0.123) (0.116) (0.125) (0.118) 
RiceAdvice + Subsidy [T2] 0.737*** 0.725*** 0.736*** 0.728*** 
 (0.125) (0.117) (0.127) (0.120) 
Combined treatment [T] 0.990*** 0.974*** 0.996*** 0.986*** 
 (0.222) (0.211) (0.229) (0.219) 
Difference between treatments [T2-T1] 0.484*** 0.477*** 0.476*** 0.470*** 
 (0.109) (0.098) (0.105) (0.095) 

Mean dependent variable in control 3.755 
Observations 1,368 1,368 1,353 1,353 
R-squared 0.214 0.221 0.215 0.222 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] 0.252** 0.252** 0.282** 0.282** 
 (0.115) (0.111) (0.124) (0.120) 
RiceAdvice + Subsidy [T2] 0.619*** 0.611*** 0.632*** 0.628*** 
 (0.123) (0.123) (0.131) (0.132) 
Combined treatment [T] 0.872*** 0.862*** 0.914*** 0.910*** 
 (0.222) (0.218) (0.240) (0.237) 
Difference between treatments [T2-T1] 0.367*** 0.359*** 0.350*** 0.346*** 
 (0.088) (0.088) (0.086) (0.088) 

Mean dependent variable in control 3.782 
Observations 694 694 686 686 
R-squared 0.227 0.230 0.234 0.237 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] 0.247 0.237 0.234 0.227 
 (0.179) (0.172) (0.180) (0.174) 
RiceAdvice + Subsidy [T2] 0.847*** 0.827*** 0.833*** 0.817*** 
 (0.198) (0.177) (0.202) (0.182) 
Combined treatment [T] 1.094*** 1.064*** 1.067*** 1.044*** 
 (0.323) (0.306) (0.330) (0.314) 
Difference between treatments [T2-T1] 0.599*** 0.591*** 0.599*** 0.590*** 
 (0.196) (0.168) (0.195) (0.168) 

Mean dependent variable in control 3.728 
Observations 674 674 667 667 
R-squared 0.320 0.336 0.320 0.336 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) 
fixed effects. ANCOVA estimates include baseline yields and year dummies, where applicable. Covariates include 
household size, age of household head, number of days in agricultural training, and indicators for if the household head 
has formal education, if farming is the household’s main activity, and if they have access to credit. Standard errors 
clustered at the village-level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).  
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Table 3: Treatment effects on rice profit (US$/ha) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] 115.6** 118.9** 122.0** 126.1** 
 (50.69) (48.95) (51.29) (49.58) 
RiceAdvice + Subsidy [T2] 275.9*** 273.2*** 282.0*** 279.9*** 
 (50.77) (48.22) (51.00) (48.94) 
Combined treatment [T] 391.5*** 392.1*** 404.0*** 406.1*** 
 (92.85) (89.24) (94.19) (90.90) 
Difference between treatments [T2-T1] 160.2*** 154.3*** 160.0*** 153.8*** 
 (40.90) (38.44) (39.88) (38.01) 

Mean dependent variable in control 1,181 
Observations 1,368 1,368 1,353 1,353 
R-squared 0.14 0.15 0.33 0.33 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] 153.9** 153.9** 164.7** 166.0** 
 (61.35) (62.28) (66.05) (67.10) 
RiceAdvice + Subsidy [T2] 259.0*** 261.7*** 264.6*** 268.4*** 
 (67.14) (66.34) (69.39) (68.98) 
Combined treatment [T] 412.9*** 415.6*** 429.3*** 434.4*** 
 (118.0) (116.5) (125.7) (124.6) 
Difference between treatments [T2-T1] 105.1** 107.8* 99.82* 102.4* 
 (51.30) (54.57) (50.46) (054.71) 

Mean dependent variable in control 1,427 
Observations 694 694 686 686 
R-squared 0.18 0.18 0.18 0.19 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] 82.54 88.30 76.68 82.90 
 (56.76) (53.74) (57.52) (54.79) 
RiceAdvice + Subsidy [T2] 301.4*** 292.2*** 296.0*** 286.9*** 
 (68.10) (60.63) (69.65) (62.40) 
Combined treatment [T] 383.9*** 380.5*** 372.7*** 369.8*** 
 (105.9) (98.70) (108.4) (101.6) 
Difference between treatments [T2-T1] 218.84*** 203.9*** 219.3*** 204.0*** 
 (67.05) (58.19) (67.52) (58.90) 

Mean dependent variable in control 923.4 
Observations 674 674 667 667 
R-squared 0.28 0.30 0.28 0.29 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) fixed 
effects. ANCOVA estimates include baseline profits and year dummies, where applicable. Covariates include household size, 
age of household head, number of days in agricultural training, and indicators for if the household head has formal education, 
if farming is the household’s main activity, and if they have access to credit. Standard errors clustered at the village-level are 
in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).  
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Table 4: Treatment effects on quantity of fertilizer (kg/ha) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] -8.777 -11.775 -8.179 -10.92 
 (10.61) (10.08) (10.55) (10.01) 
RiceAdvice + Subsidy [T2] -31.67*** -33.62*** -31.00*** -32.65*** 
 (10.98) (11.45) (10.98) (11.40) 
Combined treatment [T] -40.45** -45.39** -39.18** -43.57** 
 (18.69) (19.25) (18.67) (19.19) 
Difference between treatments [T2-T1] -22.90** -21.84** -22.82** -21.74** 
 (10.81) (9.738) (10.73) (9.601) 

Mean dependent variable in control 366.6 
Observations 1,368 1,368 1,353 1,353 
R-squared 0.068 0.080 0.100 0.113 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] 4.156 2.064 3.894 1.694 
 (14.82) (15.45) (15.15) (15.75) 
RiceAdvice + Subsidy [T2] -4.215 -10.18 -5.719 -11.63 
 (30.22) (29.85) (30.25) (29.91) 
Combined treatment [T] -0.059 -8.114 -1.825 -9.936 
 (38.93) (39.33) (39.31) (39.72) 
Difference between treatments [T2-T1] -8.371 -12.24 -9.614 -13.32 
 (27.40) (26.68) (27.25) (26.61) 

Mean dependent variable in control 316.9 
Observations 694 694 686 686 
R-squared 0.076 0.099 0.078 0.102 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] -23.05 -26.94 -20.67 -23.94 
 (17.90) (16.26) (17.60) (15.73) 
RiceAdvice + Subsidy [T2] -61.04*** -59.08*** -56.89*** -54.35*** 
 (18.65) (16.44) (18.36) (15.94) 
Combined treatment [T] -84.08** -86.02*** -77.56** -78.29*** 
 (31.51) (28.52) (30.49) (27.11) 
Difference between treatments [T2-T1] -37.99** -32.14* -36.22* -30.41* 
 (18.53) (16.00) (19.08) (16.36) 

Mean dependent variable in control 418.4 
Observations 674 674 667 667 
R-squared 0.088 0.115 0.091 0.119 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) fixed 
effects. ANCOVA estimates include baseline fertilize use and year dummies, where applicable. Covariates include household 
size, age of household head, number of days in agricultural training, and indicators for if the household head has formal 
education, if farming is the household’s main activity, and if they have access to credit. Standard errors clustered at the village-
level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).  
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Table 5: Treatment effects on quantity of NPK fertilizer (kg/ha) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] -14.07** -16.06** -14.22** -16.03** 
 (6.142) (6.195) (6.204) (6.272) 
RiceAdvice + Subsidy [T2] -21.12*** -21.81*** -21.48*** -21.98*** 
 (7.038) (7.106) (7.059) (7.151) 
Combined treatment [T] -35.20*** -37.87*** -35.70*** -38.01*** 
 (11.88) (12.13) (11.98) (12.25) 
Difference between treatments [T2-T1] -7.047 -5.750 -7.266 -5.945 
 (5.784) (5.543) (5.758) (5.548) 

Mean dependent variable in control 210.4 
Observations 1,368 1,368 1,353 1,353 
R-squared 0.049 0.057 0.131 0.140 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] -12.44 -13.25 -12.07 -13.03 
 (9.161) (9.764) (9.304) (9.891) 
RiceAdvice + Subsidy [T2] -21.99 -24.90 -21.80 -24.68 
 (19.00) (18.16) (18.95) (18.15) 
Combined treatment [T] -34.43 -38.15 -33.88 -37.71 
 (24.24) (23.93) (24.38) (24.09) 
Difference between treatments [T2-T1] -9.543 -11.66 -9.734 -11.65 
 (17.38) (16.66) (17.22) (16.56) 

Mean dependent variable in control 176.8 
Observations 694 694 686 686 
R-squared 0.056 0.075 0.057 0.076 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] -16.97* -20.10** -16.68* -19.32** 
 (9.713) (9.258) (9.704) (9.122) 
RiceAdvice + Subsidy [T2] -22.19 -20.72 -21.78 -19.91 
 (14.67) (12.48) (14.59) (12.50) 
Combined treatment [T] -39.16* -40.82** -38.45* -39.24** 
 (20.91) (18.70) (20.81) (18.59) 
Difference between treatments [T2-T1] -5.220 -0.625 -5.104 -0.591 
 (13.48) (11.55) (13.45) (11.56) 

Mean dependent variable in control 245.5 
Observations 674 674 667 667 
R-squared 0.085 0.111 0.085 0.111 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) fixed 
effects. ANCOVA estimates include baseline NPK use and year dummies, where applicable. Covariates include household 
size, age of household head, number of days in agricultural training, and indicators for if the household head has formal 
education, if farming is the household’s main activity, and if they have access to credit. Standard errors clustered at the village-
level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).    
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Table 6: Treatment effects on quantity of urea fertilizer (kg/ha) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] 12.76** 11.95** 12.79** 12.10** 
 (5.039) (4.752) (5.182) (4.912) 
RiceAdvice + Subsidy [T2] -4.579 -5.818 -3.924 -4.912 
 (5.634) (5.589) (5.886) (5.857) 
Combined treatment [T] 8.183 6.130 8.868 7.183 
 (9.470) (9.531) (9.893) (10.00) 
Difference between treatments [T2-T1] -17.34*** -17.77*** -16.72*** -17.01*** 
 (4.959) (4.098) (5.012) (4.100) 

Mean dependent variable in control 158.0 
Observations 1,368 1,368 1,353 1,353 
R-squared 0.081 0.093 0.089 0.101 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] 16.60* 15.31 16.03 14.80 
 (9.494) (9.377) (9.527) (9.422) 
RiceAdvice + Subsidy [T2] 17.77 14.73 16.49 13.55 
 (14.53) (14.94) (14.62) (15.05) 
Combined treatment [T] 34.37 30.04 32.51 28.35 
 (21.13) (21.52) (21.25) (21.67) 
Difference between treatments [T2-T1] 1.172 -0.586 0.461 -1.255 
 (12.50) (12.62) (12.55) (12.69) 

Mean dependent variable in control 140.1 
Observations 694 694 686 686 
R-squared 0.073 0.093 0.073 0.092 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] 8.407 7.960 9.157 8.884 
 (7.250) (6.639) (7.392) (6.874) 
RiceAdvice + Subsidy [T2] -27.76*** -27.26*** -24.88*** -23.97*** 
 (7.821) (8.286) (7.719) (8.210) 
Combined treatment [T] -19.35 -19.30 -15.72 -15.08 
 (13.12) (12.85) (13.06) (12.93) 
Difference between treatments [T2-T1] -36.17*** -35.22*** -34.03*** -32.85*** 
 (7.446) (7.776) (7.608) (7.877) 

Mean dependent variable in control 176.7 
Observations 674 674 667 667 
R-squared 0.115 0.136 0.127 0.150 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) 
fixed effects. ANCOVA estimates include baseline urea use and year dummies, where applicable. Covariates include 
household size, age of household head, number of days in agricultural training, and indicators for if the household head 
has formal education, if farming is the household’s main activity, and if they have access to credit. Standard errors 
clustered at the village-level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).  
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Table 7: Treatment effects on timing of first NPK application (days) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] -1.545*** -1.482*** -1.608*** -1.565*** 
 (0.465) (0.485) (0.499) (0.521) 
RiceAdvice + Subsidy [T2] -1.308** -1.226* -1.293** -1.235** 
 (0.622) (0.639) (0.573) (0.602) 
Combined treatment [T] -2.852*** -2.708*** -2.901*** -2.800*** 
 (0.915) (0.950) (0.907) (0.956) 
Difference between treatments [T2-T1] 0.237 0.256 0.315 0.330 
 (0.608) (0.620) (0.577) (0.596) 

Mean dependent variable in control 15.40 
Observations 1,215 1,215 1,150 1,150 
R-squared 0.165 0.174 0.214 0.224 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] -1.121** -1.049** -1.168** -1.120* 
 (0.479) (0.504) (0.520) (0.562) 
RiceAdvice + Subsidy [T2] -1.585*** -1.464** -1.539*** -1.434*** 
 (0.496) (0.537) (0.456) (0.510) 
Combined treatment [T] -2.706*** -2.513*** -2.707*** -2.554*** 
 (0.846) (0.890) (0.860) (0.931) 
Difference between treatments [T2-T1] -0.464 -0.414 -0.371 -0.314 
 (0.486) (0.542) (0.465) (0.534) 

Mean dependent variable in control 16.19 
Observations 606 606 576 576 
R-squared 0.085 0.105 0.109 0.130 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] -2.186*** -2.125*** -2.237*** -2.169*** 
 (0.653) (0.674) (0.709) (0.728) 
RiceAdvice + Subsidy [T2] -1.187 -1.122 -1.177 -1.120 
 (0.988) (1.019) (0.919) (0.937) 
Combined treatment [T] -3.373** -3.247** -3.415** -3.289** 
 (1.417) (1.466) (1.414) (1.453) 
Difference between treatments [T2-T1] 1.000 1.003 1.060 -1.049 
 (0.894) (0.913) (0.833) (0.838) 

Mean dependent variable in control 14.65 
Observations 609 609 574 574 
R-squared 0.394 0.402 0.396 0.407 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) fixed 
effects. ANCOVA estimates include baseline timing of NPK application and year dummies, where applicable. Covariates 
include household size, age of household head, number of days in agricultural training, and indicators for if the household 
head has formal education, if farming is the household’s main activity, and if they have access to credit. Standard errors 
clustered at the village-level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1).  
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Table 8: Treatment effects on timing of first urea application (days) 

 OLS OLS ANCOVA ANCOVA 
(1) (2) (3) (4) 

Panel A: all years     
RiceAdvice [T1] -0.803 -0.805 -0.639 -0.595 
 (0.653) (0.679) (0.652) (0.691) 
RiceAdvice + Subsidy [T2] -0.397 -0.258 -0.589 -0.434 
 (0.679) (0.708) (0.696) (0.712) 
Combined treatment [T] -1.200 -1.063 -1.228 -1.029 
 (1.275) (1.330) (1.257) (1.308) 
Difference between treatments [T2-T1] 0.406 0.547 0.050 0.162 
 (0.386) (0.398) (0.487) (0.506) 

Mean dependent variable in control 33.03 
Observations 1,226 1,226 1,168 1,168 
R-squared 0.103 0.112 0.114 0.123 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel B: 2016 only     

RiceAdvice [T1] -1.759 -1.769 -1.728 -1.723 
 (1.074) (1.137) (1.085) (1.195) 
RiceAdvice + Subsidy [T2] -2.476 -2.347 -2.731 -2.614 
 (1.837) (1.740) (1.856) (1.731) 
Combined treatment [T] -4.235* -4.117* -4.459* -4.338* 
 (2.453) (2.427) (2.444) (2.429) 
Difference between treatments [T2-T1] -0.717 -0.578 -1.003 -0.891 
 (1.744) (1.660) (1.808) (1.716) 

Mean dependent variable in control 33.62 
Observations 623 623 592 592 
R-squared 0.076 0.093 0.082 0.103 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Panel C: 2017 only     

RiceAdvice [T1] -0.076 -0.108 0.173 0.216 
 (0.901) (0.898) (0.951) (0.976) 
RiceAdvice + Subsidy [T2] 1.682 1.723 1.534 1.600 
 (2.300) (2.228) (2.255) (2.198) 
Combined treatment [T] 1.606 1.615 1.707 1.816 
 (2.662) (2.602) (2.690) (2.661) 
Difference between treatments [T2-T1] 1.758 1.831 1.360 1.383 
 (2.263) (2.185) (2.178) (2.118) 

Mean dependent variable in control 32.45 
Observations 603 603 576 576 
R-squared 0.207 0.219 0.213 0.225 
LGA FE Yes Yes Yes Yes 
Household covariates No Yes No Yes 
Note: For simplicity, coefficient estimates are only reported for the treatment effect. All regressions include LGA (strata) 
fixed effects. ANCOVA estimates include baseline timing of urea application and year dummies, where applicable. 
Covariates include household size, age of household head, number of days in agricultural training, and indicators for if 
the household head has formal education, if farming is the household’s main activity, and if they have access to credit. 
Standard errors clustered at the village-level are in parentheses (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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