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1 Introduction

In an influential paper, Suri (2011) (hereinafter S2011) develops an alternative approach to identi-

fying correlated random coefficient (CRC) models and uses the method to address a longstanding

development puzzle: why do many sub-Saharan farmers continue to use traditional farming tech-

niques when more modern, higher-return agricultural technologies are available? To the many

explanations explored in the existing literature, S2011 adds one that hinges on a specific form

of heterogeneity in the returns and costs associated with the technology. S2011 uses data from

Kenyan farm households to estimate a CRC model that imposes a parametric relationship between

farmers’ absolute advantage (i.e., the component of productivity that is independent of technology)

and their comparative advantage (i.e., their relative productivity with the hybrid technology over

that without).

A key innovation in the S2011 approach compared to earlier methods (Wooldridge, 1997; Heck-

man and Vytlacil, 1998) is that identification does not rely on the existence of a valid instrumental

variable. Instead, identification comes from a linear projection of an individual’s returns to adop-

tion onto the observed history of her adoption, an approach similar to the correlated random effects

(CRE) method in Chamberlain (1984). The S2011 application of a CRC model to development

economics is novel and the paper is widely cited—yet the influence of the empirical approach has

been limited. Citations to S2011 suggest its impact has largely been to document the existence and

relevance of heterogeneous returns to technology adoption in developing countries, a finding that is

not unique to S2011. Few, if any, citations center on the use or interpretation of the specific form

of heterogeneity implied by S2011’s linearity comparative advantage assumption.

We revisit the econometric model in S2011 and propose an alternative group random coeffi-

cient (GRC) strategy that draws on recent developments in the nonparametric panel identification

literature (Altonji and Matzkin, 2005; Chernozhukov et al., 2013; Bester and Hansen, 2009). Our

approach provides a convenient estimation strategy for several reasons. First, we show that the

S2011 CRC model may be viewed as a restricted version of a GRC model that nonparametrically

identifies returns to adoption assuming time homogeneity (Chernozhukov et al., 2013). Unlike the

reduced form of the S2011 CRC model, the parameters in the unrestricted GRC model have a clear

economic interpretation. Second, the unrestricted GRC model has another practical advantage: it

can elucidate potential identification concerns for the CRC model to the practitioner. Finally, our

methodology is more easily extended to multiple time than the S2011 CRC approach, which can

suffer from multi-collinearities when certain adoption histories are unobserved in a given dataset.

Throughout this paper, we illustrate our method using the same empirical example as S2011.

Section 2 presents our model in the two-period case, clarifies its relationship with the S2011 model,

and extends the approach to the multiple-period case. Section 3 describes and presents the empirical

analysis revisiting hybrid adoption in Kenya and Section 4 discusses the relevance of our findings

for the broader questions surrounding technology adoption in low-income agriculture.

1



2 A Group Random Coefficient Approach

Suppose that yield is a function of hybrid adoption, hit, farmer ability, ai, and idiosyncratic shocks,

εit, which is given by the following, for i = 1, . . . , n and t = 1, . . . , T .

yit = f(hit, ai) + εit. (1)

In this paper as in S2011, we maintain the strict exogeneity assumption, i.e. E[εit|hi, ai] = 0, where

hi = (hi1, . . . , hiT ) denotes individual i’s adoption history and each hit is a binary indicator of

adoption. We impose no restriction on the distribution of farmer ability conditional on adoption

history (ai|hi), thereby treating ai as a “fixed effect” (Chernozhukov et al., 2013). Note that

ai may be any finite-dimensional vector. Furthermore, as per arguments in Chernozhukov et al.

(2013), f(hit, ai) may be viewed as the conditional mean function of a fully nonseparable model,

φ(hit, ai, uit), where we assume time homogeneity, i.e. uit|hi, ai
d
= ui1|hi, ai. For simplicity, we

consider a model without covariates, but our approach to identification extends to the inclusion of

additively separable covariates.

Following Chernozhukov et al. (2013), we can express the above equation equivalently as a

random coefficient model by letting µi ≡ f(0, ai) and ∆i ≡ f(1, ai)− f(0, ai),

yit = µi + ∆ihit + εit. (2)

In our empirical context, where a farmer decides whether or not to adopt a new agricultural

technology, yit represents maize yields, µi denotes farmer i’s expected yield without adoption and

∆i her returns to adoption. respectively. The econometric model of adoption in S2011 is given by

the following,

yit = τi + θi + (β + φθi)hit + εit, (3)

where τi is farmer i’s absolute advantage, which is (mean) independent of technology adoption (i.e.,

E[τi|hi] = E[τi]). Selection into technology adoption is determined by θi, farmer i’s comparative

advantage, which admits the normalization E[θi] = 0. We note that (3) is a restricted version of

(2), where µi = τi + θi and ∆i = β+φθi. We call this key restriction—that the returns to adoption

are linear in comparative advantage—the linearity in comparative advantage (LCA) restriction.

In the following, we present our group random coefficient (GRC) approach and show how the

parameters of the S2011 model can be identified from a restricted version of the GRC method. We

first outline our method for the two-period case and then generalize it to any finite T ≥ 2.
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2.1 Two-period Case

2.1.1 GRC Unrestricted Model

The GRC approach relies on the insight that with a binary variable and fixed T , there is a finite

number of adoption histories. For T = 2, there are four possible realizations of hi, with support

given by H = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Since the adoption histories may imply different

distributions of ability, it is natural to define subpopulations in terms of adoption histories. S2011

refers to the four subpopulations in the two-period case as never-adopters, joiners, leavers and

always-adopters. We use HS = {(0, 1), (1, 0)} to denote the set of switcher subpopulations. Its

complement set, Hc
S = {(0, 0), (1, 1)}, is composed of the two stayer subpopulations. As in S2011,

we are interested in how the average returns to adoption varies across the different subpopulations.

We therefore integrate the unrestricted model (2) with respect to ai|hi, which yields the following

conditional mean model under strict exogeneity

E[yit|hi = h] = µh + ∆hhit, (4)

where µh ≡ E[µi|hi = h] and ∆h ≡ E[∆i|hi = h].

By the time homogeneity of µh and ∆h, we can only identify the average return to adoption for

subpopulations that we observe with and without hybrid adoption in our data. Hence, ∆h is only

nonparametrically identified for the switcher subpopulations, h ∈ HS . For stayer subpopulations,

we can only identify their average yield with or without adoption. For the never-adopters, we can

identify the average yield without adoption, µ(0,0). For the always-adopters, we can identify the av-

erage yield with adoption, which we denote κ(1,1) = µ(1,1) +∆(1,1). Without further restrictions, we

cannot separately identify µ(1,1) and ∆(1,1). Hence, the returns to adoption is not nonparametrically

identified for the stayer subpopulations.

All of the aforementioned identifiable objects can be estimated consistently using the following

GRC model,

yit =
∑

h∈H\(1,1)

µh1{hi = h}+
∑
h∈HS

∆hhit1{hi = h}+ κ(1,1)hit1{h = (1, 1)}+ εit. (5)

Unlike the reduced form of the CRC model in S2011, all of the coefficients in the above model have

economic meaning; µh is the average yield without hybrid adoption for subpopulation h, ∆h is the

average return to adoption for switcher subpopulation h, and κ(1,1) is the average yield with hybrid

for the alwayers-adopters. Next, we impose the LCA restriction on the above model and illustrate

how the unrestricted model can indicate potential identification concerns for φ, a key parameter in

the S2011 model.
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2.1.2 GRC Model with the LCA Restriction

The following proposition establishes the relationship between parameters in the unrestricted GRC

model and those in the S2011 model, which imposes the LCA restriction. Let θh = E[θi|hi = h].

Proposition 1. Let yit = µi + ∆ihit + εit. Assume µi = τi + θi, ∆i = β + φθi, E[θi] = 0,

E[τi|hi] = E[τi], E[εit|hi, τi, θi] = 0, the following equalities hold for h, h′ ∈ H = {0, 1}T ,

(i) ∆h = β + φθh,

(ii) µh − µh′ = θh − θh′,

(iii) ∆h −∆h′ = φ
(
θh − θh′

)
, for h 6= h′.

The derivation of the above results is provided in a supplementary appendix. The above iden-

tities imply that we can re-write φ as the ratio of different subpopulations’ differences in returns

to adoption to their differences in yield without adoption. Since we can identify both µh and ∆h

for switcher subpopulations, φ is identified from the following in the two-period case, assuming

µ(1,0) 6= µ(0,1),

φ =
∆(1,0) −∆(0,1)

µ(1,0) − µ(0,1)
. (6)

The above equality illustrates that φ would not be identified if joiners and leavers had the same

average yield without adoption. Since the unrestricted GRC model enables us to estimate both

parameters without imposing the LCA restriction, we can use these estimates to evaluate potential

concerns regarding the identification of φ.

We can write the restricted GRC model by solving (6) for ∆(1,0) using the above identity and

plugging it into (5):

yit =
∑

h∈H\(1,1)

µh + ∆(0,1)hit + φ(µ(1,0) − µ(0,1))hit1{hi = (1, 0)}

+
(
µ(1,1) + φ

(
µ(1,1) − µ(0,1)

))
hit1{hi = (1, 1)}+ εit, (7)

where the restriction on the coefficient on hit1{hi = (1, 1)} follows from noting that κ(1,1)−∆(0,1) =

µ(1,1)+∆(1,1)−∆(0,1) and using Proposition 1 (ii)-(iii). The restricted GRC model can be estimated

using nonlinear least squares or method of moments.

Since the LCA restriction allows us to extrapolate to stayers as pointed out in Verdier (2020), we

can identify µ(1,1). Further, this allows identification of β and θh for all h ∈ H. Let πh = P (hi = h)

for h ∈ H. Note that E[µi] =
∑

h∈H πhµh. Since E[θi] = 0, E[µi] = E[τi]. As a result,

θh = E[µi|hi = h]− E[τi|hi = h] = E[µi|hi = h]− E[τi] = µh −
∑
h∈H

πhµh.
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Since ∆h = β + φθh, we can therefore also identify β = ∆(0,1) − φθ(0,1) = ∆(1,0) − φθ(1,0).

2.2 Multiple-Period Case

For the general case, where T ≥ 2, we first generalize our notation. Let h = (h1, . . . , hT ) ∈ H =

{0, 1}T , HS = {h ∈ HS : 0 <
∑T

t=1 hit < T}, and Hc
S = H\HS . We can now write our unrestricted

GRC model for any T ≥ 2

yit =
∑

h∈H:
∑T

t=1 ht<T

µh1{hi = h}+
∑
h∈HS

∆hhit1{hi = h}+ κhT
hit1

{
T∑
t=1

hit = T

}
+ εit. (8)

where hT denotes the always-adopter trajectory.

Using Proposition 1, we can obtain a restricted version of the above model,

yit =
∑

h∈H:
∑T

t=1 ht<T

µh + ∆h0
hit +

∑
h∈HS\h0

φ(µh − µh0
)hit1{hi = h}

+
(
µhT

+ φ
(
µhT
− µh0

))
hit1

{
T∑
t=1

hit = T

}
+ εit, (9)

for some baseline trajectory h0 ∈ HS . We use efficient GMM to estimate the above model using

all regressors as instruments. When T > 2, then there are more than two switcher subpopulations,

|HS | > 2. Since the identification of φ only requires the presence of two switcher subpopulations,

we would have over-identifying restrictions for this parameter and can use Hansen’s J-statistic to

test them.

In sum, the GRC approach provides several appealing features, especially when T > 2. First,

the S2011 approach to estimating the CRC model is relatively cumbersome to adapt to the multiple-

period case. This is due to multicollinearities that arise in the reduced form whenever some adoption

histories are unobserved in a given dataset.1 Since the regressors in our GRC approach consist of

dummy variables for the adoption histories, this issue is circumvented by the inclusion of dummy

variables for the observed trajectories. Second, the unrestricted GRC model, unlike the reduced

form of the CRC model, has an economic interpretation and provides the practitioner with insights

on potential identification concerns pertaining to the parameter φ. Third, the GRC approach

allows us to test the two key restrictions in the S2011 model—specifically, the time homogeneity

assumption and the LCA restriction. Finally, relating the S2011 model with the panel identification

literature provides other testable identifying assumptions, including exchangeability and other non-

parametric correlated random effects restrictions (Altonji and Matzkin, 2005; Bester and Hansen,

1To obtain the reduced form of the CRC model in S2011, θi is projected onto a fully saturated model of hit for all
t = 1, . . . , T . As soon as any adoption history is unobserved, then at least two of the independent variables in this
projection become collinear.
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2009; Ghanem, 2017).

3 Revisiting Hybrid Maize Adoption in Kenya

We demonstrate the advantages of the GRC approach using the same empirical application as

S2011. Specifically, we compare the GRC and CRC estimators in the context of hybrid maize

adoption among Kenyan farmers using the same nationwide panel dataset used in S2011.2 We

construct our sample and generate variables according to instructions provided by the author of

the original study.3 This provides a working dataset that is very close, but not identical, to the

data used in S2011.

We begin by replicating the OLS and fixed effects (FE) specifications that launch the analysis

in S2011. These results, shown in Table 1, provide an estimate of the yield advantages of hybrid

maize compared to non-hybrid maize varieties. While the results in Panel A without district fixed

effects and without controls generate estimates that are statistically identical to those provided in

S2011 for the coefficient on hybrid, our point estimates are smaller in magnitude than hers once

we include these fixed effects and controls.4 Whereas OLS results in S2011 with controls suggest

hybrids are associated with 54% higher yield, ours suggest a more modest 23%. As in S2011, we

cannot reject that the FE results in Panel A are different from zero.

In Panel B, we estimate the same specifications including data from the year 2000, which was

dropped from the analysis reported in S2011. While not directly comparable to results presented

in S2011, the patterns in Panel B include similar hybrid point estimates for the OLS regressions,

but the FE estimates are larger and statistically different from zero.

We replicate the CRC results in S2011 in Panel A of Table 2 using the Stata package from

(Barriga Cabanillas et al., 2018).5 Most of the important coefficient estimates in this panel are

statistically indistinguishable from S2011. One exception is that our point estimates of β, the

average return to hybrid, are smaller than those in S2011. Further, our estimates of φ, the key

sorting parameter in the S2011 CRC model are substantially different from the original. Whereas

S2011 finds that φ is consistently negative and often significantly different from zero, our φ point

estimates are small and statistically insignificant. This is an important discrepancy given that

this parameter drives the main conclusion in S2011: it defines the specific form of heterogeneity

2The dataset is the Tegemeo Agricultural Policy Research and Analysis (TAPRA) Rural Household survey. This
nationwide survey was collected in five waves in 1997, 2000, 2004, 2007, and 2010. The agricultural variables cover
the 1996/97, 1999/2000, 2003/04, 2006/07, and 2009/10 crop years. The first wave of the survey interviewed 1,500
agricultural households, covering 22 districts and 107 villages across eight agroecological zones. Sampling probabilities
were proportional to village size with reference to census data.

3Details on the dataset and variable construction are in the supplementary appendix as well as the cleaning code,
which is available upon request.

4The results in Panel A correspond to Table IIIA in S2011.
5We omit the results in columns (3) and (6) in S2011 Table VIIIA, which include both covariates and interactions

of the covariates with the hybrid decision.

6



that drives hybrid adoption. Our inability to replicate this key finding in S2011 is unexpected and

can only be attributed to seemingly trivial differences in the working data we construct from the

Tegemeo panel dataset as discussed in the supplementary appendix. When we extend the analysis

to T = 3 in Panel B, however, our CRC estimate of φ becomes negative and significant.

The unrestricted GRC estimates help explain the results in Tables 1 and the inconsistent CRC

results in Table 2. For T = 2 (Table 3), the yield returns to hybrid adoption are very different for

joiners (∆01) and leavers (∆10). This explains why the estimated coefficient on hybrid for the T = 2

FE regression is insignificant, as it pools these two switcher subgroups. However, the average yield

without adoption for these two subgroups (µ01 and µ10) is statistically indistinguishable, especially

when we add control variables in column (2). As noted in 6 (see also Proposition 1 (ii)-(iii)),

φ is not identified when joiners and leavers have the same average yield without adoption; this

complicates the identification and estimation of φ. This may explain why very small discrepancies

in our working data seem to have disproportionate effects on the results for this key parameter.

With this complication in mind, we report the results from the restricted GRC model, where we

impose the LCA restriction, in columns (3) and (4) of Table 3. These restricted GRC estimates

suggest, like S2011, that φ is large and negative.

Extending the GRC to T = 3 provides further insights to resolve this inconsistent pattern of

results. In Table 4, we continue to see heterogeneous yield effects associated with hybrid adoption

(add more intuition here once we add coefficient plots), i.e. the estimated ∆ coefficients. With the

parametric sorting restriction imposed, we find negative and significant estimates of φ, but with

T = 3 we can also use over-identification tests of this restriction. When we do, we clearly reject

the LCA restriction.

In sum, using the same underlying dataset as S2011, we do not see consistent evidence that φ

is negative in the two-year panel. We attribute this inconsistent evidence to weak identification

of this sorting parameter—likely stemming from the fact that yield outcomes in the absence of

hybrid adoption are indistinguishable for joiners and leavers. When we extend our analysis to the

three-year panel, we reject the parametric restriction on which this parameter is based, suggesting

that the φ-based form of heterogeneous returns is inappropriate in the context of hybrid maize

adoption among Kenyan farmers.

4 Discussion

Despite being well-known and widely-cited in development economics, S2011 has had surprisingly

limited methodological impact: rather than leading to widespread use of the CRC method and

nuanced discussions of the specific form of heterogeneity it implies, the article is largely cited for

showing the presence of heterogeneity in returns to new technologies. This is unfortunate since

optimal policy and product design will often vary with the particular form that heterogeneity of

returns takes rather than its existence. We revive the methodological contribution of S2011 by
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generalizing her model to make it more flexible and more accessible for empirical analysis.

Our results lead us to different conclusions about the form of heterogeneity than S2011 and

therefore (re-)open important questions regarding the factors that drive technology adoption in

agriculture in low-income countries. While we find evidence of heterogeneity in the returns to

adoption across joiners and leavers, we cannot consistently replicate the φ estimates in S2011 using

the two-year panel. Using the extended three-year panel dataset, the CRC and restricted GRC

approaches produce similar φ estimates. However, we reject the parametric restriction that yields

this parameter, which suggests that the linearity of response in comparative advantage does not

hold in this empirical context.
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Table 1: OLS and FE (Table IIIA in Suri 2011)

OLS FE

Panel A: 1997 and 2004
Hybrid 1.042*** 0.277*** 0.231*** 0.0139 0.0308

(0.0467) (0.0503) (0.0475) (0.0696) (0.0662)
Acres -0.00679 -0.0637***

(0.00880) (0.0217)
Seed rate (kg/acre) x 10 0.219*** 0.177***

(0.0310) (0.0309)
Land prep (Ksh/acre) x 1000 0.0111*** 0.0190***

(0.00300) (0.00517)
Fertilizer (Ksh/acre) x 1000 0.0229*** 0.0116***

(0.00308) (0.00390)
Hired labor (Ksh/acre) x 1000 0.0372*** 0.0240***

(0.00968) (0.00926)
Family labor (hours/acre) x 1000 0.234*** 0.241**

(0.0855) (0.108)

N 1197 1197 1197 1197 1197
N × T 2394 2394 2394 2394 2394
District FE No Yes Yes
Controls No No Yes No Yes
Adj. R2 0.21 0.41 0.51 0.49 0.56

Panel B: 1997, 2000, and 2004
Hybrid 0.994*** 0.343*** 0.263*** 0.124** 0.105**

(0.0413) (0.0425) (0.0401) (0.0543) (0.0518)
Acres -0.0132 -0.0706***

(0.00851) (0.0205)
Seed rate (kg/acre) x 10 0.262*** 0.233***

(0.0207) (0.0217)
Land prep (Ksh/acre) x 1000 0.0176*** 0.0180***

(0.00427) (0.00657)
Fertilizer (Ksh/acre) x 1000 0.0263*** 0.0130***

(0.00352) (0.00282)

N 1197 1197 1197 1197 1197
N × T 3591 3591 3591 3591 3591
District FE No Yes Yes
Controls No No Yes No Yes
Adj. R2 0.19 0.36 0.43 0.45 0.50

Notes: Dependent variable is ln yield. Covariates follow Suri (2011): All regressions include the following
household-level demographic controls: household size, the number of boys (males<age 16), the number of girls
(females<age 16), the number of men (aged 17 to 39), the number of women, and the number of older men (>
age 40). All regressions additionally control for the number of maize acres, the seed rate (kg per acre), land
preparation expenditures (Ksh per acre), and fertilizer expenditure (Ksh per acre), as well as main season
rainfall. When t = 2 , we additionally include hired labor and family labor (both measured in hours per acre),
but these variables were not collected in the 2000 data collection wave.
OLS specification: yit = δ + βhit +X

′
itγ + εit

FE specification: yit = δ + αi + βhit +X
′
itγ + εit
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Table 2: CRC results (Table VIIIA in Suri 2011)

Full sample Without HIV districts

Panel A: 1997 and 2004
λ1 0.716*** 0.639*** 0.630*** 0.545***

(0.0761) (0.0710) (0.0782) (0.0720)
λ2 0.923*** 0.701*** 0.937*** 0.727***

(0.108) (0.0993) (0.116) (0.106)
λ3 -0.334 -0.465 -0.297 -0.322

(0.405) (0.443) (0.305) (0.295)
β 0.0195 0.0161 -0.0151 0.0576

(0.0842) (0.478) (0.133) (0.104)
φ 0.104 0.854 -0.0443 -0.00475

(0.935) (4.116) (0.605) (0.952)

Observations 1197 1197 1057 1057
Controls No Yes No Yes
χ2 8927.8 8753.7 25298.1 26736.0

Panel B: 1997, 2000, and 2004
λ1 0.443*** 0.388*** 0.371*** 0.323***

(0.0759) (0.0718) (0.0796) (0.0759)
λ2 0.0641 -0.0217 0.0389 -0.0512

(0.0779) (0.0729) (0.0868) (0.0811)
λ3 0.513*** 0.361*** 0.539*** 0.363***

(0.107) (0.103) (0.116) (0.114)
λ4 0.260** 0.289** 0.216 0.240*

(0.128) (0.122) (0.132) (0.126)
λ5 -0.141 -0.0697 -0.286* -0.211

(0.169) (0.168) (0.167) (0.171)
λ6 0.473*** 0.514*** 0.331* 0.435**

(0.170) (0.161) (0.180) (0.174)
λ7 -0.0626 -0.0695 0.115 0.191

(0.233) (0.273) (0.236) (0.332)
β 0.00396 -0.0570 -0.0313 -0.150

(0.106) (0.128) (0.122) (0.181)
φ -0.333** -0.494*** -0.295 -0.527***

(0.156) (0.151) (0.194) (0.181)

Observations 1197 1197 1057 1057
Controls No Yes No Yes
χ2 27248.6 27375.9 57411.2 51857.4

Notes: Dependent variable is ln yield. Covariates follow Suri (2011): All regressions include the
following household-level demographic controls: household size, the number of boys (males<age
16), the number of girls (females<age 16), the number of men (aged 17 to 39), the number of
women, and the number of older men (> age 40). All regressions additionally control for the
number of maize acres, the seed rate (kg per acre), land preparation expenditures (Ksh per acre),
and fertilizer expenditure (Ksh per acre), as well as main season rainfall. When t = 2 , we
additionally include hired labor and family labor (both measured in hours per acre), but these
variables were not collected in the 2000 data collection wave.
The λ coefficients correspond to the following projections:
For t = 2, θi = λ0 + λ1hi1 + λ2hi2 + λ3hi1hi2 + νi
For t = 3 the projection is θi = λ0 + λ1hi1 + λ2hi2 + λ3hi3 + λ4hi1hi2 + λ5hi1hi3 + λ6hi2hi3 +
λ7hi1hi2hi3 + νi.
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Table 3: GRC models, 2 periods

Unrestricted Restricted

µ00 5.246*** 0.210* 5.246*** 4.775***
(0.0459) (0.111) (0.0459) (0.0780)

µ01 5.942*** 0.711*** 5.942*** 5.364***
(0.0916) (0.217) (0.0916) (0.103)

µ10 6.215*** 0.704*** 6.215*** 5.685***
(0.0746) (0.166) (0.0746) (0.0972)

µ11 5.870*** 5.230***
(0.137) (0.180)

∆01 0.508*** -0.269 0.508*** 0.436***
(0.0978) (0.263) (0.0978) (0.0889)

∆10 -0.476*** 0.363**
(0.0950) (0.165)

φ -3.602*** -2.547***
(1.337) (0.737)

Derived parameters:
µ̄ 5.76 5.18

(0.079) (0.11)
β 1.18 0.91

(0.24) (0.080)
Hypothesis tests (p−values):
H0: All µ equal 0.021 0.98 0.021 0.0047
H0: All ∆ equal 5.6e-13 1.3e-10
H0 : φ = 0 0.0070 0.00055

Observations 2394 2394 2394 2394
Controls No Yes No Yes

Notes: Dependent variable is ln yield. Covariates follow Suri (2011). All regressions in-
clude the following household-level demographic controls: household size, the number of boys
(males<age 16), the number of girls (females<age 16), the number of men (aged 17 to 39),
the number of women, and the number of older men (> age 40). All regressions additionally
control for the number of maize acres, the seed rate (kg per acre), land preparation expendi-
tures (Ksh per acre), and fertilizer expenditure (Ksh per acre), as well as main season rainfall.
When t = 2, we additionally include hired labor and family labor (both measured in hours
per acre), but these variables were not collected in the 2000 data collection wave.
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Table 4: GRC models, 3 periods

Unrestricted Restricted

µ000 5.288*** 0.438*** 5.288*** 4.842***
(0.0484) (0.113) (0.0484) (0.0658)

µ001 5.677*** 0.566* 5.790*** 5.203***
(0.143) (0.309) (0.137) (0.144)

µ010 5.341*** 0.343* 5.352*** 4.859***
(0.0850) (0.204) (0.0835) (0.0953)

µ011 6.127*** 1.212*** 6.216*** 5.633***
(0.0929) (0.227) (0.0905) (0.104)

µ100 5.856*** 0.621*** 5.836*** 5.400***
(0.0935) (0.197) (0.0936) (0.101)

µ101 5.948*** 0.999*** 6.149*** 5.651***
(0.198) (0.287) (0.166) (0.169)

µ110 6.318*** 1.071*** 6.226*** 5.791***
(0.103) (0.215) (0.101) (0.107)

µ111 7.007*** 6.699***
(0.262) (0.398)

∆001 0.521*** -0.137 0.114 0.174*
(0.165) (0.382) (0.0789) (0.0958)

∆010 0.325*** 0.0189
(0.125) (0.187)

∆011 0.269** -0.442**
(0.118) (0.217)

∆100 -0.269** 0.465**
(0.117) (0.193)

∆101 0.298 0.408*
(0.201) (0.239)

∆110 -0.336*** -0.160
(0.107) (0.192)

φ -0.392*** -0.569***
(0.142) (0.130)

Derived parameters:
µ̄ 6.33 5.94

(0.13) (0.21)
β -0.097 -0.24

(0.12) (0.18)
Hypothesis tests (p−values):
H0: All µ equal 4.0e-13 0.022 9.4e-13 1.7e-13
H0: All ∆ equal 0.35 0.021
H0 : φ = 0 0.0057 0.000011
H0 : Over-id restrictions valid 0.0000018 0.000034

Observations 3591 3591 3591 3591
Controls No Yes No Yes

Notes: Dependent variable is ln yield. Covariates follow Suri (2011). All regressions in-
clude the following household-level demographic controls: household size, the number of boys
(males<age 16), the number of girls (females<age 16), the number of men (aged 17 to 39),
the number of women, and the number of older men (> age 40). All regressions additionally
control for the number of maize acres, the seed rate (kg per acre), land preparation expendi-
tures (Ksh per acre), and fertilizer expenditure (Ksh per acre), as well as main season rainfall.
When t = 2, we additionally include hired labor and family labor (both measured in hours per
acre), but these variables were not collected in the 2000 data collection wave.
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